1) the estimate of character sum
特征和的估计
2) Estimates for Certain Types of Character Sums
某些特征和的估计
4) characteristic estimation
特征估计
1.
The problems of characteristic estimation for the solution to the perturbed discrete matrix Lyapunov equations are studied.
探讨了摄动离散矩阵Lyapunov方程解的特征估计问题。
5) Latent root estimate
特征根估计
1.
The paper propounds two new estimates,which are named BL estimate(Bayesian estimate combined with Latent root estimate)and BP estimate(Bayesian estimate combined with Principal components estimate).
线性模型最小二乘方估计的改进大致有两条途径:利用验前信息,如贝叶斯估计;改变估计形式,如特征根估计,主成分估计。
6) facial feature estimation
特征点估计
补充资料:特征值和特征向量
特征值和特征向量 characteristic value and characteristic vector 数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩 :σ(x)=aζ ,则称x是σ的属于a的特征向量 ,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式 |xI-A|展开为x的n次多项式 fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条