1) Normal rational curve
正规有理曲线
2) rational normal curve
有理正规曲线
4) Abnormal curve
非正规曲线
5) rational curve
有理曲线
1.
By using the projective geometry,some schemes for generating rational curves from pencil of lines are investigated in this paper.
采用射影几何学方法,研究从直线束生成有理曲线的技术方案。
2.
In this paper, a new concept called uniform interval implicitization of rational curves is proposed, which is finding an uniform interval curve with lower degree bounding a given rational curve and mini.
故此提出了参数式有理曲线均匀区间隐式化的一种新方法,利用区间算术和空间重心坐标的定义,可以用一个低阶区间多项式隐式曲线来逼近所给的参数式有理曲线,同时使一些目标函数最小化,达到用隐式多项式曲线来逼近参数式有理曲线的很好效果,并提供了一些算法和实例。
3.
In this paper, a new approach based on perturbation method is proposed for the piecewise polynomial approximation of rational curves and surfaces.
本文利用摄动的思想,以摄动有理曲线(曲面)的系数的无穷模作为优化目标,给出了用多项式曲线(曲面)逼近有理曲线(曲面)的一种新方法。
6) rational curves
有理曲线
1.
Let X be a n dimensional projective variety,x be a fixed point in X,and let C_t(X,_X(1)) be the set of rational curves C of degree t passing through x in X,p_t(X)=dimC_t(X,_X(1)) for any positive integer.
设X是n维射影代数簇,取定X中一点x,设Ct(X,X(1))表示X中的过x点的t次有理曲线的集合,pt(X)=d imCt(X,X(1))。
2.
However, due to the advantages of implicit curves and surfaces which the parametric curves and surfaces don t have, sometime we need to use the implicit form of a rational curves and surfaces.
有理曲线和曲面作为一类重要的参数曲线曲面,在计算机辅助设计与制造中有着广泛的应用。
3.
However, due to the complex of computation and the need of the design, sometime we need to use polynomial approximation for a rational curves and surfaces.
有理曲线和曲面作为一类重要的逼近函数,在计算机辅助设计与制造中有着广泛的应用。
补充资料:有理曲线
有理曲线
rational curve
有理曲线[rati田目curve;p叫.0”场妞aH即抓朗] 定义在代数闭域k上的一维代数簇(司罗bnucva-riety),它的有理函数域是k上1次纯超越扩张(tran-scendental extension).非奇异完全有理曲线同构于射影直线P’.完全的奇异曲线X是有理的,当且仅当它的几何亏格g等于零,也就是说,X上没有正则微分形式. 当火为复数域C时,(仅有的)非奇异完全有理曲线x是Ri~nn球面C口{的}· B皿.C. Ky几拟oB撰【补注】在经典文献中有理曲线亦称单行曲线(u苗-cursal eurve). 如果X定义在一个不必代数闭的域k上,且X在k上双有理等价于P止,则称X为k有理曲线(无-rational eurve).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条