1) strong GV-semigr oup
强GV-半群
2) GV-semigroup
GV-半群
1.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
2.
Futher we apply our results to GV-semigroups and E-inversive semigroups.
本文主要利用同余的核和迹讨论π-正则半群上的完全正则同余对,并把结果推广到GV-半群和E-反演半群上。
3) GV-inverse semigroup
GV-逆半群
1.
Subsemigroup〈E(S)〉of a GV-inverse Semigroup;
GV-逆半群S的子半群〈E(S)〉
4) quasi-GY-semigroup
拟GV-半群
5) GV-semigroups
GV-半群
1.
In this dissertation, we mainly describe some congruences and characters onGV-semigoups, in fact, we extend some results of completely regular semigroup toGV-semigroups.
本文主要讨论了GV-半群的某些性质和同余,把完全正则半群的某些结果推广到了GV-半群上,全文共分两章,具体内容如下: 第一章主要讨论了GV-半群的某些性质。
2.
Left regular semigroups,regular subsets and GV-semigroups are studied in this paper.
本文主要研究了左正则半群,正则子集以及GV-半群。
6) GV-inverse semigroup congruence
GV-逆半群同余
1.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
补充资料:强连续半群
强连续半群
strongly-continuous son!-group
强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条