1) series of complex numbers
模糊复数值级数
2) complex fuzzy series
复模糊级数
3) series of Fuzzy complex number
模糊复级数
1.
The article gives a similar definition to the series of Fuzzy complex number from the definition of the series of real number, and gives the definition of the series of Fuzzy complex number convergence.
由模糊实级数收敛性定义 ,对模糊复级数作出相仿定义 ,给出模糊复级数的收敛
4) series of fuzzy valued functions
模糊值函数级数
1.
The absolute uniform convergence for the series of fuzzy valued functions;
模糊值函数级数的绝对一致收敛性
5) Fuzzy complex number-valued mapping
模糊复数值映射
1.
Second,on the bounded closed fuzzy number fuzzy metric space,the concepts of convergence in metric for fuzzy complex number sequences and the continuity of fuzzy complex number-valued mapping are given.
其次,给出模糊复数序列依度量收敛的概念,在有界闭模糊复数构成的度量空间上给出模糊复数值映射的连续性和压缩映射概念。
6) complex fuzzy-valued function
复模糊值函数
1.
Differential coefficient and its properties of complex fuzzy-valued function
复模糊值函数的导数及其性质
2.
In the sense of this new ovder relation,this paper will define the limit of of the complex fuzzy-valued,discuss the character of convergence and Cauchy′s criterion for convergence of complex fuzzy-valued functions.
复模糊值函数是定义在实数集R上取值于F(C)(所有的复模糊数的集合)中的复模糊数的函数。
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条