1) fuzzy-valued function
模糊值函数
1.
Integral and requirement of fuzzy-valued function;
模糊值函数的积分及可积条件
2.
Convergence and continuity of fuzzy-valued functions;
模糊值函数的收敛性及连续性
3.
Linear representation of fuzzy number and fuzzy-valued function using fuzzy structured element;
模糊数与模糊值函数的结构元线性表示
2) fuzzy-valued functions
模糊数值函数
1.
The Differentiability of Primitives for the Fuzzy-Valued Functions;
模糊数值函数积分原函数的可导性问题
3) series of fuzzy valued functions
模糊值函数级数
1.
The absolute uniform convergence for the series of fuzzy valued functions;
模糊值函数级数的绝对一致收敛性
4) convex fuzzy-valued function
凸模糊数值函数
1.
Based on a new concept of ordering,the characterizations of differential convex fuzzy-valued function,quasi-convex fuzzy-valued function are given and their relation is discussed.
基于模糊数空间的一种新的序关系,给出了可微的凸模糊数值函数、拟凸模糊数值函数的刻划定理,并讨论了它们的关系。
5) fuzzy valued functions
模糊数值函数
1.
In this paper, we introduce the concept of monotonicity of interval functions and give the characterization of fuzzy valued functions which satisfies the H-difference.
本文提出了区间值函数单调的概念,并利用所定义的区间值函数刻划了模糊数值函数的H-差, H-可导性和S-可导性及其相互关系。
2.
Since the requirement of the real background of fuzzy mathematics(for examples,to solve the fuzzy differential equations and complete the theory of fuzzy integrals),the measurability,approximate continuity and differentiability of primitives for the fuzzy valued functions are discussed.
基于很多实际背景 (如求解模糊微分方程及完备模糊积分理论等 )的需要 ,对模糊数值函数的可测性、近似连续性及积分原函数的可导性问题进行了讨
6) fuzzy-valued function
模糊数值函数
1.
It shows that there exists a fuzzy-valued function which is (K) integrable on [a, 6], but its primitive is not differentiable almost everywhere in [a, b].
对于模糊数值函数的积分原函数的可导性问题,本文构造性地给出一反例,说明存在(K)可积的模糊数值函数其积分原函数并不是几乎处处可导的。
补充资料:本征函数和本征值
算符弲作用于函数f(r)上, 得出另一个函数。若算符弲作用于一些特定的函数Ui(r)上(i=1,2,...)结果等于一常量乘同一函数,即,
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条