说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 边界型求积公式
1)  boundary type cubature
边界型求积公式
1.
The construction of boundary type cubature is a problem that has been noticed for a very long time in numerical integration.
边界型求积公式是数值积分法研究方向早就被注意的问题。
2)  integration formula of boundary type
边界型积分公式
3)  boundary integral formula
边界积分公式
1.
By using Green function,the boundary integral formula and natural boundary integral equation for the boundary value problems of biharmonic equation were obtained.
利用Green函数,根据双调和方程边值问题的边界积分公式和自然边界积分方程。
2.
With this method,boundary integral formula just related to boundary velocity can be obtained by Fourier series expanded technique.
针对圆外区域的Stokes问题,利用Fourier展开法,通过自然边界归化得到了一个只与边界速度有关的Stokes问题的边界积分公式。
3.
After the stress function and its normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series,comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and in the convolutions,the boundary integral formula of the stress function is derived further.
将边界上的应力函数及其法向导数展开为罗朗级数,与复应力函数的罗朗级数的表达式对比,可以确定罗朗级数的各系数,再利用傅利叶级数和卷积的几个公式进行计算,得到应力函数边界积分公式。
4)  Gaussian quadrature formula
Gauss型求积公式
5)  interpolating cubature formulae
插值型求积公式
1.
Then interpolating cubature formulae is given based on Lagrange interpolation formulae.
研究定义在球面三角形上函数的数值积分,通过积分的插值多项式函数构造具有多项式精度的插值型求积公式,以及给出精确计算球面三角形上多项式函数的方法。
6)  quadrature formulas of(H~(T)_(m)(θ) type)
HTm(θ)型求积公式
补充资料:Gauss求积公式


Gauss求积公式
Gauss quadrature formula

  【补注】E.B.C加飞tofrel曾对一般的C饱任洛求积公式(w举l)进行了详细的研究(〔A3)),因此求积系数也称为Q甘七句ffel系数或(》雌劝圃臼数(C知出toff目n切旧,比玲)(亦见tAI]).在【AZI中可以找到这些系数的表.G侧医粥求积公式〔G侧诬拐甲.翻加代翻的.面;raycca Koa几-paTyP.a.加PMy月a] 求积公式 b几 歹,(·,f‘·,dx‘互一f(一,,其中结点(n阅c)荞和权c‘的选择使得该公式对于函数 2介一叶 艺a*叭(x) 介=0是精确的,这里诸a,*(x)是给定的线性无关的函数(积分限也可以是无穷的).C.F.C透uSs(【l])首先引入了对于a=一1,b=1,P(x)兰1情况下的这种公式.他得到的下述公式对于任意次数不超过2n一1的多项式都是精确的: 十l 丁,(x)dx一A{”,,(xt)+…+拟”,,(xn)+凡, 一l其中x*是】魂脚触多项式(玫罗。d犯训lyl幻扰山Lls)只(x)的根,而冲,和凡由下面公式定义: 2 月盔.声=一: (l一x孟)[P4(x*)l‘- 凡一若黑黑万f‘’·,(。),一,<“<‘· (2。+l)[(2n)!},了当被积函数充分光滑时就应该采用这种公式,可以大大节省节点的数目.例如,f(x)是由很昂贵的实验确定的或者是应用累次积分计算重积分过程中产生的.在这些实际应用中,恰当地选择权函橄(枕吵t几.币助)和函数呜(x)是很重要的. 对很多类p(习和呜(x),Gau洛求积公式的结点表是现成的(15]):特别对于夕(x)‘l,呜(x)=xj直给到n=512. 如取p(劝三l,码(x)=xj,作为一种子线段剖分计算积分的方法Ga哪求积公式可用在自动选择步长的标准积分程序中(16]).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条