1) multiplicative property
可乘性
1.
This paper consists of two parts,the multiplicative property of H-connected space and a simplified proof for invariant property of Brouwer degree.
本文主要内容分两部分:H—连通空间的可乘性和Brouwer度不变性的简化证明。
2) submultiplicative property
次可乘性
1.
Zajac s inequality concerning the submultiplicative property of the k-distortion function.
本文通过研究由Hersch-Pflugek中-偏差函数定义的两个函数的单调性,获得了关于k-偏差函数之“次可乘性”的Zajac不等式的精确形式。
3) crew reliability
乘员可靠性
1.
The basic meaning of physiological and psychological quality of armored vehicle crew was analyzed,and the content of physiological and psychological factor test of armored vehicle crew reliability was confirmed together with the examination of tank driving,such as the abilities of depth perception,double-arm harmony,attention focus,attention allocation and reaction,etc.
分析了装甲装备乘员生理心理素质的基本内涵,并结合坦克驾驶考核确定了乘员可靠性心理影响因素测试的内容,即乘员的深度知觉能力、双臂协调能力、注意集中能力、注意分配能力以及反应能力等。
2.
The crew reliability of amphibious armored vehicles is affected by both inner factors and outer ones,of which the environmental factor is an indispensable component.
两栖装甲车辆乘员可靠性受内部因素和外部因素的共同影响,而环境因素是外部因素的重要组成部分。
4) multiplicative commutativity
乘法可易性
5) multipliers integrability
乘子可积性
1.
Based on the numerical method of partial differential equation Riemann and the fission idea of differential equation,this paper introduces the concept of multipliers function and multipliers numerical method,discusses the multipliers integrability of second order linear differential equation by the numbers.
在偏微分方程Riemann解法和微分方程裂变思想的启发下,引入了微分方程乘子函数(解)和乘子解法的概念,系统地讨论了二阶线性微分方程的乘子可积性。
6) Relative Products
相对可乘性
1.
The Nearly Ultra-fuzzy Compactness of Relative Products;
近似超紧空间的相对可乘性
2.
The Relative Products of the Nearly N-compactness;
近似良紧空间的相对可乘性
3.
In the first part of this paper,we mainly discuss the relative products of the nearly N-compactness by using generalized Zadeh function,and also point out that some conclusions in the paper [2]and[20]are the corollaries of some results of paper.
本文利用广义Zadeh型函数讨论近似良紧空间的相对可乘性,使得文[2]和[20]的一些结论是本文的推论。
补充资料:乘性算术函数
乘性算术函数
multiplicative arithmetic fimction
乘性算术函数fmul石国口公eari山m团c加“为佣;My汤。-。。,雌r,.。朋aP“中MeT,,ee粗中担料.,」 对任一对互素的整数m,n,满足条件 f(m。)二f(。)·f(。)(*)的单变量算术函数(arithi优ticfu叹tion)f(次).通常假定f(m)不恒等于零(这等价于条件f(I)“1).如果对所有的素数p和自然数:有f(犷)二f(p),那么乘性算术函数称为强乘性的(stron乡y muJ石砂以柱祀).如果(,)对于任意两数m,n而不只是对互素的数成立,则f叫做完全乘性的(totally mult iPlicati化);这时f(P“)=【f(P)」‘. 乘性算术函数举例.函数;(m)—自然数m的除数的个数;函数。(。)—自然数m的除数的和;D山叮函数(E川erfun(泪on)中(水);M比油函数(M6‘伍灿众ion)以,).函数中(m)/爪是强乘性算术函数而幂函数f(m)二水’是完全乘性算术函数. H .n .K声~撰【补注】卷积 (f*。)(。)一艺f(J)g(粤) 尔“、一产口、d产生一个乘性函数上的群(grouP)当纳.单位元是函数e,这里e(l)=l,而对所有的”>l,e(n)=0.另一标准乘性函数是常数函数E(对所有neN,E(n)=1)和它的逆产,即M涌油函数(M6biusfu几无on).注意到中二拼*N,,此处对所有n有Nt(n)=。,而;=E*E,口=E*N 1. 形式上,乘性函数f的D沉dM以级数(D创c川et~)有E川er积(E山er product):矛工业业_nfl、几力一+.+工〔力-+…、.同”一护\P一P一/当f是强乘性或完全乘性时,它的形式将大大简化.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条