2) difference quotient
差分商
3) reciprocal difference
反商差分
4) Fractional difference quotient
分数次差商
1.
By the superposition technique of fractional difference quotients,the local HW2,2 estimate of weak solutions is established.
利用分数次差商的迭加技巧,在二步Carnot群上研究非线性次椭圆方程组在椭圆型条件和可控制结构条件下弱解的正则性,得到了弱解的局部HW2,2估计。
5) difference quotient
差商
1.
Through the suitable selection of difference quotient and correction of the one-dimension inaccuracy linear searching,scope of the improved method is extended.
从应用角度出发,首先,将约束变尺度法改进为一般约束条件,通过适当选择差商形式和对一维不精确线性搜索方法的修正,扩大了该方法的适用范围。
2.
Some methods of constructing a new iterative method by means of two auxiliary functions, z = g (x) and u (x) = f (x) eax , and difference quotient are introduced and discussed.
介绍并讨论了利用两个辅助函数z=g(x)、u(x)=f(x)eαx和差商来构造迭代法的几种方法。
6) divided difference
差商
1.
The explicit formula of general divided difference with multiplicity knots;
一般有重差商的显式公式
2.
Considering that derivatives could be approximated by divided differences,two iterative schemes that avoid computing derivatives were obtained.
采用导数可以被差商近似的办法,得到两个多初始点的迭代公式,从而避免了求导数运算。
3.
A recurrent formula for the divided difference expanded coefficients is derived.
推导出了差商展开系数的一个递推公式 ,基于该公式给出了计算差商展开系数的一个新算法 。
补充资料:差商
差商就是因变量的改变量与自变量的改变量两者相除的商。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条