1) LF topological spaces generated by a crisp topology
可拓扑生成LF拓扑空间
1.
Lowen meaning in LF topological spaces generated by a crisp topology ,other "L-good generalization " properties are further proved.
本文主要是在已有的一些可拓扑生成LF拓扑空间关于在R。
2) L-fuzzy Topology Generated by a Crisp Topology
可拓扑生成的LF拓扑空间
3) LF topological spaces
LF拓扑空间
1.
The concepts of r remote neighborhood family and r- remote neighborhood family are defined by means of LF-r closed set in LF topological spaces.
在LF拓扑空间中借助LF-r闭集定义了r远域族与r-远域族,进一步引入r-Lindelff可数性和弱r-Lindelff可数性的概念,证明了r-Lindel可数性和弱r-Lindel可数性对于LF-r闭子集是遗传的,是r拓扑性质。
2.
In this paper,new definition of regular spaces in LF topological spaces are given,some equivalent conditions and good properties of this regular space are proved,such as L-good extension,closed hereditary,each open(closed)set is θ-open(closed)set and so on.
本文在LF拓扑空间 (LX,δ)中给出正则空间的另一种定义 ,证明了这种正则空间具有一些好的性质与等价条件 ,如L -好的推广 ,闭遗传 ,每个开 (闭 )集是θ -开 (闭 )集等。
4) LF topological space
LF拓扑空间
1.
S-countably closed space in LF topological space;
LF拓扑空间的S—可列闭空间
2.
A theorem says LF-open set is still LF-open set in open subspace is proved,and the sufficient and necessary condition for homomorphism between two LF topological space being-continuous is obtained.
提出了r不定序同态、r连续序同态、r开序同态并讨论了它们之间的相互关系,得出了LF-r开集在开子空间中仍是LF-r开集,两个LF拓扑空间之间序同态r连续的充要条件等结论。
3.
This paper has given the following definitions in LF topological space: S-order homomorphic mapping and S-continuity, and discussed the properties and relationship between them.
王国俊教授在文献[1]中引进序同态及序同态映射的连续性定义及其性质,本文把它推广到LF拓扑空间的半开集理论中去,引入几种S-序同态映射和几种S-连续性,并讨论它们的性质及其相互关系。
5) LF-topological space
LF-拓扑空间
1.
S*P-connectedness on LF-topological spaces;
LF-拓扑空间的S*P-连通性
2.
Definition of the a-open set and the a-closed set in LF-topological spaces given,efforts are made to define the a- connectedness by means of a-open sets,following which a probe into some of its basic properties and equivalent depiction is done as well.
在LF-拓扑空间中定义了a-开集和a-闭集,并借助a-开集定义了a-连通,研究了它的一些基本性质和等价刻画。
6) L-fuzzy topological space
LF拓扑空间
1.
In this paper,three important properties of T_(212) separation axiom are given in L-fuzzy topological spaces.
给出LF拓扑空间中T212分离公理的三条重要性质,即弱同胚不变性、相对可积性和可和性。
2.
Two classes of separation (N-T_0, N-T_1) are introduced in L-fuzzy topological space.
在LF拓扑空间中引入了N-T0 ,N-T1 分离性概念 ,这不仅使分明的T0 ,ST1 拓扑空间分别成为N-T0 ,N-T1 拓扑空间的特款 ,而且揭示了在LF拓扑空间中的T0 ,ST1 分离性与层次分离性 (准T0 ,ST- 1 ) ,N-T0 ,N -T1 分离性间的分解关
补充资料:地理拓扑空间
一个真实的地理空间,包括各类地理事实,均有可能直接使用或通过变换后使用“图”去进行描述和分析。研究图上“点对”关系以及连通方式的平面总体,即为地理拓扑空间。一个图的基本要素为:点的集合、边的集合及关联函数。针对这3个基本要素,地理拓扑空间中应用关联、相邻、环、连杆、关联矩阵和邻接矩阵等术语作为分析时的统一基础。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条