1) LF stratified topological spaces
LF层次拓扑空间
1.
Therefore,Dα-Ti(i=-1,0,1,2) separations in much wider LF stratified topological spaces preserve Ti-separations(i=-1,0,1,2) in LF topological spaces.
在LF层次拓扑空间中,利用Dα-闭集定义了Dα-Ti(i=-1,0,1,2)分离性等概念,并讨论了它们的性质。
2) Stratified L-fuzzy Topology
层次LF拓扑
3) LF topological spaces
LF拓扑空间
1.
The concepts of r remote neighborhood family and r- remote neighborhood family are defined by means of LF-r closed set in LF topological spaces.
在LF拓扑空间中借助LF-r闭集定义了r远域族与r-远域族,进一步引入r-Lindelff可数性和弱r-Lindelff可数性的概念,证明了r-Lindel可数性和弱r-Lindel可数性对于LF-r闭子集是遗传的,是r拓扑性质。
2.
In this paper,new definition of regular spaces in LF topological spaces are given,some equivalent conditions and good properties of this regular space are proved,such as L-good extension,closed hereditary,each open(closed)set is θ-open(closed)set and so on.
本文在LF拓扑空间 (LX,δ)中给出正则空间的另一种定义 ,证明了这种正则空间具有一些好的性质与等价条件 ,如L -好的推广 ,闭遗传 ,每个开 (闭 )集是θ -开 (闭 )集等。
4) LF topological space
LF拓扑空间
1.
S-countably closed space in LF topological space;
LF拓扑空间的S—可列闭空间
2.
A theorem says LF-open set is still LF-open set in open subspace is proved,and the sufficient and necessary condition for homomorphism between two LF topological space being-continuous is obtained.
提出了r不定序同态、r连续序同态、r开序同态并讨论了它们之间的相互关系,得出了LF-r开集在开子空间中仍是LF-r开集,两个LF拓扑空间之间序同态r连续的充要条件等结论。
3.
This paper has given the following definitions in LF topological space: S-order homomorphic mapping and S-continuity, and discussed the properties and relationship between them.
王国俊教授在文献[1]中引进序同态及序同态映射的连续性定义及其性质,本文把它推广到LF拓扑空间的半开集理论中去,引入几种S-序同态映射和几种S-连续性,并讨论它们的性质及其相互关系。
5) LF-topological space
LF-拓扑空间
1.
S*P-connectedness on LF-topological spaces;
LF-拓扑空间的S*P-连通性
2.
Definition of the a-open set and the a-closed set in LF-topological spaces given,efforts are made to define the a- connectedness by means of a-open sets,following which a probe into some of its basic properties and equivalent depiction is done as well.
在LF-拓扑空间中定义了a-开集和a-闭集,并借助a-开集定义了a-连通,研究了它的一些基本性质和等价刻画。
6) L-fuzzy topological space
LF拓扑空间
1.
In this paper,three important properties of T_(212) separation axiom are given in L-fuzzy topological spaces.
给出LF拓扑空间中T212分离公理的三条重要性质,即弱同胚不变性、相对可积性和可和性。
2.
Two classes of separation (N-T_0, N-T_1) are introduced in L-fuzzy topological space.
在LF拓扑空间中引入了N-T0 ,N-T1 分离性概念 ,这不仅使分明的T0 ,ST1 拓扑空间分别成为N-T0 ,N-T1 拓扑空间的特款 ,而且揭示了在LF拓扑空间中的T0 ,ST1 分离性与层次分离性 (准T0 ,ST- 1 ) ,N-T0 ,N -T1 分离性间的分解关
补充资料:不可约拓扑空间
不可约拓扑空间
irreducible topological space
不可约拓扑空间【沂曰州bleto州哈口I明ce;HenP“BO-皿Moe功no加r“tlecICOe nPocTP,cTBOI 不能表作两个真闭子集之并集的拓扑空间(topolo-百以lspace).不可约拓扑空间也可以等价地定义为:它的任意开子集都是连通的或任意非空开子集都是处处稠密的.不可约拓扑空间在连续映射下的象是不可约的.不可约拓扑空间之积是不可约的.不可约拓扑空间的概念仅对不可分离空间有意义;它常用于涉及非分离的2汤‘目d拓扑(z五riski topofogy)的代数几何学. 拓扑空间X的不可约分支(irn习ueible comP0nent)是X的任一极大不可约子集.不可约分支是闭的,它们的并集就是整个X.B.H.八aHHJIoB撰【补注】在覆盖理论(见菠盖(集合的)(coVe功19(ofset)))中还有不可约性的概念:一个拓扑空间是不可约的,如果它的每个开覆盖都有不可约的开加细;一个覆盖是不可约的(谊曰ueible),如果它的真子族都不是覆盖.可数紧空间(cou幻tablv .CompactsP暇)由条件“每个不可约开覆盖都是有限的”来刻画.于是,一个空间是紧的,当且仅当它是可数紧且不可约的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条