1) Leray-Lions operator
Leray-Lions算子
2) Leray-Lions theorem
Leray-Lions定理
1.
In this thesis, via the Leray-Lions theorem and some fixed point theorems, we discuss solvability of a class of nonlinear singular or degenerate elliptic equations and systems.
在第一章,作者通过Leray-Lions定理,研究了低阶项和高阶项都退化的高阶拟线性退化椭圆型方程。
3) Koppelman-Leray operators
Koppelman-leray算子
4) Lions boundary conditions
Lions边值条件
5) Leray-Schauder theorem
Leray-Schauder定理
1.
We use Leray-Schauder theorem to obtain existence and uniqueness theorems for nonlinear nth-order multipoint boundary value problemsu(n)+f(u(n-2))u(n-1)=g(x,u,u′,…,u(n-1))+e(x),u(i)(ηi)=u(n-2)(0)=u(n-2)(1)=0,0≤ηi≤1,i=0,1,…,n-3in uncontinous condition,correspondence results are extended.
利用Leray-Schauder定理研究了非连续条件下的n阶非线性多点边值问题u(n)+f(u(n-2))u(n-1)=g(x,u,u′,…,u(n-1))+e(x),u(i)(ηi)=u(n-2)(0)=u(n-2)(1)=0,0≤η解的存在性和惟一性,推广了已有的相应结果。
6) Leray-Schauder principle
Leray-Schauder原理
1.
The existence of solutions to the singular second-order boundary-value problem x″(t)=f(t,x(t))+e(t),0<t<1;x(0)=0,x(1)=∫01a(t)x(t)dt on C1[0,1) was taken into consideration by using Leray-Schauder principle.
运用Leray-Schauder原理考虑二阶奇异边值问题x″(t)=f(t,x(t),x′(t))+e(t),0
2.
We mainly use Leray-Schauder principle to abtain existence theorems for some classes of nonlinear higher-order two-point boundary value problems.
主要利用Leray-Schauder原理研究了几类高阶非线性两点边值问题解的存在性。
3.
On the base of the increasing nonlinear function and by using Leray-Schauder principle,the existence of the solution of a kind of fourth-order two-point bourdary value problem was discussed.
利用Leray-Schauder原理,在非线性增长条件下,讨论一类四阶两点边值问题的解的存在性。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条