1) Refined plastic hinge analysis
精细塑性铰分析
3) refined plastic hinge model
精细塑性铰模型
1.
A three-dimensional beam element, which based on stability functions of beam-column theory and refined plastic hinge model, has been developed.
本论文建立了基于梁柱理论稳定函数和精细塑性铰模型的空间梁单元。
4) refined plastic hinge
精细塑性铰法
1.
For the purpose of refined plastic hinge analysis of 3-D steel frames,a spatial beam-column element considering the shear deformation effects is presented,which can account for the gradual yielding of the section and the reduction of the element stiffness due to distributed plasticity resulted from residual stresses.
建立考虑剪切变形影响的精细塑性铰法的空间梁柱单元,可以考虑残余应力引起的刚度退化和塑性沿截面的渐进屈服,单元刚度矩阵包含了轴向、弯曲和扭转等位移之间的耦合影响。
5) plastic hinge line analysis
塑性铰线分析
1.
The plastic hinge line analysis model has proved successful in predicting the strength of different structural hollow section(SHS) joints due to yielding of the connecting face of the chord.
塑性铰线分析模型已成功用于估计由弦杆表面屈服控制的各种管节点的强度;然而弦杆自身的轴向压力对节点承载力的影响仍然是用一个经验折减系数来考虑的。
6) plastic hinge distribution
塑性铰分布
1.
Computation of plastic hinge distribution under different lateral load patterns;
高层结构塑性铰分布在不同荷载模式下的求解
补充资料:结构塑性极限分析
结构塑性极限分析 structures,plastic limit analysis of 对结构在塑性极限状态下的特性的研究。又称结构破损分析。当外载荷达到某一极限值时,结构即变成几何可变机构,变形无限制增长,从而失去承载能力,这种状态称为结构的塑性极限状态。在塑性极限分析中,由于不考虑弹性变形而使分析过程大为简化,且所得的塑性极限载荷与考虑弹塑性过程所得到的结果完全相同。凡是在极限条件中起作用的内力,称为广义应力。当某点的广义应力满足极限条件时,表示结构上该点已进入屈服状态;当结构上有若干截面达到屈服状态时,结构即变成机构,开始无限制地增加变形,结构达到了极限状态。 研究内容 ①求出结构的塑性极限载荷。②找出极限状态下,结构中的应力分布规律。③求出结构在极限状态下 ,满足塑性变形规律和结构机动条件的破损机构。 为了解决上述问题,除了要知道材料的有关参数外,还应知道静力和机动条件。这些条件包括:①极限条件。即结构出现屈服时其广义力(极限条件中所包含的弯矩、薄膜力或轴向力)应满足的条件。②破损机构条件,即在极限状态下结构的运动规律,或结构失去承载能力时的运动形式。③平衡条件。④几何条件。其中①、②两个条件应建立在理论分析和实验研究的基础上,是结构极限分析的物理依据;③、④两个条件是结构处于弹性状态或塑性状态都必须满足的条件。如果所求得的解满足以上全部条件而且满足所给的边界条件,则该解即为极限分析的完全解。 基本假设和概念 在结构极限分析中,一般采用如下几个假设:①材料是理想刚塑性的(弹性应变比塑性应变小得多且强化性质不明显的材料)。②结构变形足够小。③在达到极限状态前 ,结构不失去稳定性 。④满足比例加载条件(各应力分量按一定比例增长)。 在结构极限分析中,常用到以下两个概念:①静力容许应力场。即满足平衡条件和力的边界条件且不破坏极限条件的应力场。②运动容许位移场。即满足几何约束条件并使外力作正功的位移场。 研究方法 由于不容易得到完全解,在极限分析理论中发展了两个定理,即下限定理和上限定理:①下限定理:所有与静力容许应力场对应的载荷中的最大载荷为极限载荷 。②上限定理:所有与运动容许位移场对应的载荷中的最小载荷为极限载荷。如果一个载荷既是极限载荷的上限,又是极限载荷的下限,则这个载荷必满足极限分析中的全部条件 。用以上两个定理求极限载荷的方法分别称为静力法和运动法。 对于复杂结构,为了求出极限载荷,可以放松对极限条件的要求,即对极限条件进行简化,以便找出解的上限或下限。常用的有最大法向应力条件、单矩或双矩弱作用的屈服条件。 对于梁、桁架、刚架、轴对称圆板和旋转轴对称薄壳 ,都已找到了大量完全解。对于较复杂的结构,都可用静力法或运动法分别找出下限解或上限解。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条