1) force based beam-column element
基于力形函数的梁柱单元
2) Fiber-model based beam-column element
基于纤维模型的梁柱单元
3) beam-column elements
梁-柱单元
4) beam-column element
梁柱单元
1.
Material and geometrically nonlinear spatial beam-column element based on the finite element flexibility method;
基于有限单元柔度法的材料与几何双重非线性空间梁柱单元
2.
Comparative investigation of displacement-based and force-based beam-column element theories;
基于位移形函数和力形函数的梁柱单元理论对比研究
3.
On the comparison of the two common beam-column element theories and the example analysis
两种常见的梁柱单元理论对比与实例分析研究
5) meshless shape function
无单元形函数
6) element coupling shape function
单元耦合形函数
1.
A newkind of element coupling shape function meatri-ces is used in finite element method,so that ele-ment elastic displacement is expressed as thesecond order small quantities of element nodedisplacement.
在有限元方法中首次引入单元耦合形函数(阵),将单元弹性位移表示成为单元结点位移的二阶小量形式。
2.
A new kind of element coupling shape function matrices is used in finite element method, so that the element elastic displacements are expressed as the second order small quantities of element node displacemen.
本文在有限元方法中首次引入了单元耦合形函数(阵),以此将单元弹性位移表示为单元结点位移的二阶小量形式。
3.
A new kind of element coupling shape function matrices is used in finite element method, so that element elastic displacement is expressed as the second order small quantities of element node displacement.
本文在有限元方法中首次引入了单元耦合形函数(阵),以此将单元弹性位移表示成为单元结点位移的二阶小量形式。
补充资料:带形法(解析函数)
带形法(解析函数)
strip method (analytic functions)
带形法(解析函数)1 striP Inetl瓦Kl(田司ytic肠.‘石叨s);no月oc MeTO月] 复变函数论中的一种方法,其基础是联系某个特殊曲线族曲线的长度与由该族曲线填充而成的区域的面积的一些不等式.该方法基于G心zsch的一些引理(fl」).其中之一叙述如下. 考虑边长为A和B的一个矩形,它包含有限个不相重叠的单连通区域S*,k“1,一,n,每个区域都具有Jordan边界与长度为A的两条边均交成线段而不退缩为点(区域S*形成从长度为A的一边到另一边的带状域).若S*被共形映射成边长为a*与b*的矩形使上述的线段变成长度为“*的边,则 咨a,,A 、二二兰~丈二立 k瞥1 bkB’等号仅当S*,k二l,…,n,是边长为a*和B的矩形且满足艺笑_、“*=A时才成立. 另一个引理是Gr‘tz劝原理(Gr6tzseh PnnciPle).这两个G由tzsch引理对无限多个子区域的情形也成立. 带形法首先被H .Gr议zsch(【11)用作单叶共形映射与拟共形映射理论中的一种方法,他应用该方法系统研究并解决了定义在有限连通与无限连通区域中的单叶函数的大量极值问题(见【31;关于别的应用可见【21). 这一方法也成为极值度量法的基础(见极值度最法(extrema】叱tr记,rnethod ofthe).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条