2) ALGEBRAIC STRUCTURES ON ONTOLOGY
本体上的代数结构
3) Primitive algebra
本原代数
4) Algebraic codebook
代数码本
1.
For innovation codebook, algebraic codebook is used with more flexibility in closing in the speech redundant signal.
采用Chebyshev多项式准确有效地估算线谱对(LSP);采用开环和闭环分析相结合进行非整数基音搜索;采用代数码本结构作为固定码本,大大降低了计算复杂度,在频域更好地控制了激励信号的统计特性。
6) basic loop algebra
基本圈代数
1.
Let kZn be the basic loop algebra with n verlices,A=kZn/Jd be the d-truncated algebra.
设kZn是域k上n个顶点的基本圈代数,A=kZn/Jd是d-次基本截面代数,计算了基本截面代数A的Cartan矩阵C,并给出Cartan矩阵可逆的充分必要条件。
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条