说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵Padé-型逼近
1)  Matrix Padé-type approximation
矩阵Padé-型逼近
2)  matrix Padé approximation
矩阵Padé逼近
1.
When all interpolation points approach zero,a matrix Padé approximation with chosen coefficients is constructed,whose coefficients can be obtained by the least square method.
当所有的插值结点都趋于零时,导出了系数可选择的矩阵Padé逼近,其中的系数可用非常有效的最小二乘法求得。
3)  multivariate matrix Padé approximant
多元矩阵Padé逼近
1.
Algebraic properties of multivariate matrix Padé approximant;
多元矩阵Padé逼近的代数性质
4)  Padé-type approximation
Padé-型逼近
1.
To solve Fredholm integral equations of the second kind,a generalized linear functional was introduced and then function-valued Padé-type approximation was defined.
函数值Padé-型逼近被引入来求解积分方程。
2.
Four expressions of the mixed method are presented in this paper, which are based on combination of the Padé-type approximation, the α-β table and the γ-δ table.
该方法是建立在Padé-型逼近与α-β方法、γ-δ方法相结合的基础上的。
5)  Matrix Padé-type table
矩阵Padé-型表
6)  function-valued Padé-type approximation
函数值Padé-型逼近
1.
In this paper,computation of two special determinants that appear in the construction of a function-valued Padé-type approximation for computing the second kind Fredholm integral equation is investigated.
这两个行列式是构造第二类Fredholm积分方程解的函数值Padé-型逼近的行列式公式,一般计算行列式的算法对于这两个行列式的计算较难实现,该文主要利用著名的Schur补定理解决了这一问题。
2.
An example given in the paper shows that the function-valued Padé-type approximations have better approximation effect at the eigenvalue of Fredholm integral equations of the second kind.
该文引入了一种从多项式空间到函数空间线性算子,从而定义了函数值Padé-型逼近来求解第二类Fredholm积分方程。
补充资料:Padé逼近


Padé逼近
Pate approximation

  幂级数的一种最佳有理逼近.设 f(:)二艺f*zk(l) k启0为任一(形式上的或收敛的)幂级数,n,m)0,为整数,R。t。是形如p/q的所有有理函数类,其中p与q是关于乞的多项式,魄q(川,吨p(。且q举0.级数(l)(函数f)的(n,m)型Pa由逼近(几叱appro刀rr‘nt)是函数类R,,,中与幂级数(l)在点艺二o有最大可能切触阶的有理函数兀。二〔R。。.更确切地说,函数二。,.由条件 。(f一二。,.)二max{a(f一r):r〔R。,}确定,其中,a(甲)是级数 甲一艺甲*:‘ k留0中第一个非零系数的下标. 也可以将函数二。.定义为满足条件 deg夕簇n,degq簇m, (叹f一p)(z)=A。,,z”+‘+’+…(2)的任意两个多项式p和q(q举0)的商p/q. 对于固定的n,m,幂级数(l)存在唯一的R玉de逼近叭.,·表毛7r。,。}筑,~。称作是级数(l)的Pa击奉(胁table).形如{“。,.}爪。的序列称作为耻表的行(rows of the Pad亡tabk)(零行恰好是f的Tavlor多项式序列);称{叭,。}二一。为几必表的列;而{7r,,J,。}界。则被称作P队记表的对角线.最重要的特殊情形j二O是P以记表的主对角线. 函数兀。二的计算归结为求解一个线性方程组,其系数可借助于给定幂级数的系数f*,k二0,…,”十m来表示.如果Han拙1矩阵(Hallkelrr心tr议) [了。_。十tf。_.十2…f.1 △__二]---一”一””! tf·f…“‘f一,」有非零的行列式,则函数二。,.的分母q。,,由下述公式给出 }二了。二:} 11八。,。乙l q。,Lz)=,获丁丁甲一一一丁l::{ det(△。.)}二_‘} 一”’…‘;篇,‘二zf”‘:…(规范化条件为q。,,(o)二1;也可写出函数二,,,的分子的显式表达式).并且 (f一究。,,)(:)=A。,.:”十’十’+.…有时用上述关系式来定义氏说逼近;但此种情形下的Pa成逼近对某个确定的(儿,m)不一定会存在.给定幂级数f的(n,m)型P以企逼近常用符号 「n/m】=[n/m】,记之. 为了有效地计算R记己逼近,不采用显式公式,而利用Pad亡表中存在的递推关系将更为方便.大量的算法已被建立用于Pa叱逼近的机器计算;这些问题在实际应用中具有特别重要的意义(见「川,【18」). A.L.Cauchy“1])首先研究了利用R。.。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条