2) matrix Padé approximation
矩阵Padé逼近
1.
When all interpolation points approach zero,a matrix Padé approximation with chosen coefficients is constructed,whose coefficients can be obtained by the least square method.
当所有的插值结点都趋于零时,导出了系数可选择的矩阵Padé逼近,其中的系数可用非常有效的最小二乘法求得。
3) multivariate matrix Padé approximant
多元矩阵Padé逼近
1.
Algebraic properties of multivariate matrix Padé approximant;
多元矩阵Padé逼近的代数性质
4) Padé-type approximation
Padé-型逼近
1.
To solve Fredholm integral equations of the second kind,a generalized linear functional was introduced and then function-valued Padé-type approximation was defined.
函数值Padé-型逼近被引入来求解积分方程。
2.
Four expressions of the mixed method are presented in this paper, which are based on combination of the Padé-type approximation, the α-β table and the γ-δ table.
该方法是建立在Padé-型逼近与α-β方法、γ-δ方法相结合的基础上的。
5) Matrix Padé-type table
矩阵Padé-型表
6) function-valued Padé-type approximation
函数值Padé-型逼近
1.
In this paper,computation of two special determinants that appear in the construction of a function-valued Padé-type approximation for computing the second kind Fredholm integral equation is investigated.
这两个行列式是构造第二类Fredholm积分方程解的函数值Padé-型逼近的行列式公式,一般计算行列式的算法对于这两个行列式的计算较难实现,该文主要利用著名的Schur补定理解决了这一问题。
2.
An example given in the paper shows that the function-valued Padé-type approximations have better approximation effect at the eigenvalue of Fredholm integral equations of the second kind.
该文引入了一种从多项式空间到函数空间线性算子,从而定义了函数值Padé-型逼近来求解第二类Fredholm积分方程。
补充资料:Padé逼近
Padé逼近
Pate approximation
幂级数的一种最佳有理逼近.设 f(:)二艺f*zk(l) k启0为任一(形式上的或收敛的)幂级数,n,m)0,为整数,R。t。是形如p/q的所有有理函数类,其中p与q是关于乞的多项式,魄q(川,吨p(。且q举0.级数(l)(函数f)的(n,m)型Pa由逼近(几叱appro刀rr‘nt)是函数类R,,,中与幂级数(l)在点艺二o有最大可能切触阶的有理函数兀。二〔R。。.更确切地说,函数二。,.由条件 。(f一二。,.)二max{a(f一r):r〔R。,}确定,其中,a(甲)是级数 甲一艺甲*:‘ k留0中第一个非零系数的下标. 也可以将函数二。.定义为满足条件 deg夕簇n,degq簇m, (叹f一p)(z)=A。,,z”+‘+’+…(2)的任意两个多项式p和q(q举0)的商p/q. 对于固定的n,m,幂级数(l)存在唯一的R玉de逼近叭.,·表毛7r。,。}筑,~。称作是级数(l)的Pa击奉(胁table).形如{“。,.}爪。的序列称作为耻表的行(rows of the Pad亡tabk)(零行恰好是f的Tavlor多项式序列);称{叭,。}二一。为几必表的列;而{7r,,J,。}界。则被称作P队记表的对角线.最重要的特殊情形j二O是P以记表的主对角线. 函数兀。二的计算归结为求解一个线性方程组,其系数可借助于给定幂级数的系数f*,k二0,…,”十m来表示.如果Han拙1矩阵(Hallkelrr心tr议) [了。_。十tf。_.十2…f.1 △__二]---一”一””! tf·f…“‘f一,」有非零的行列式,则函数二。,.的分母q。,,由下述公式给出 }二了。二:} 11八。,。乙l q。,Lz)=,获丁丁甲一一一丁l::{ det(△。.)}二_‘} 一”’…‘;篇,‘二zf”‘:…(规范化条件为q。,,(o)二1;也可写出函数二,,,的分子的显式表达式).并且 (f一究。,,)(:)=A。,.:”十’十’+.…有时用上述关系式来定义氏说逼近;但此种情形下的Pa成逼近对某个确定的(儿,m)不一定会存在.给定幂级数f的(n,m)型P以企逼近常用符号 「n/m】=[n/m】,记之. 为了有效地计算R记己逼近,不采用显式公式,而利用Pad亡表中存在的递推关系将更为方便.大量的算法已被建立用于Pa叱逼近的机器计算;这些问题在实际应用中具有特别重要的意义(见「川,【18」). A.L.Cauchy“1])首先研究了利用R。.。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条