1) positive pseudo-symmetric solution
拟对称正解
1.
The multiplicity of positive pseudo-symmetric solutions to a three-point boundary value problem of p-Laplacian equations
带p-Laplacian算子三点边值问题拟对称正解的多重性
2.
We considered the existence of positive pseudo-symmetric solutions for four-point boundary value problems of p-Laplacianequations (φp(u )) (t)+λf(t,u(t))=0, t∈(0,1),u(0)-βu (ξ)=0, u(ξ)-δu (η)=u(1)+δu (1+ξ-η).
获得了其拟对称正解的存在性定理。
3.
By using the fixed-point theorem of cone expansion-compression type with norm,we study the existence of positive pseudo-symmetric solutions to a four-point boundary value problem.
利用范数形式的锥拉伸与压缩不动点定理,研究了一类四点边值问题拟对称正解的存在性。
2) pseudo-symmetric solution
拟对称解
1.
This dissertation discusses mainly the existence of pseudo-symmetric solutions of boundary value problems for ordinary differential equations.
本论文主要研究微分方程边值问题拟对称解的存在性,全文共分五部分,主要内容如下:1、介绍微分方程边值问题的起源和国内外在边值问题领域的研究现状以及本文的主要研究内容。
3) symmetric positive solution
对称正解
1.
In this paper,an existence result of symmetric positive solution for fourth-order boundary value problems is obtained by using the fixed-point index thoery.
讨论了一类四阶两点边值问题u(4)(t)=f(u(t),u(′t),u(″t)),t∈[0,1],u(0)=u(1)=u″(0)=u″(1)=0对称正解的存在性,用不动点指数理论证明了在一定条件下问题至少存在一个对称正解。
2.
The two iterative schemes of symmetric positive solution are studied for a two-point boundary value problem by the help of monotonic technique.
对一类两点边值问题给出了对称正解的两种单调迭代格式,主要工具是单调算子迭代技巧。
3.
In this paper,we discuss the existence of symmetric positive solutions for a kind of for fourth-order two point boundary value problem.
文章讨论了一类四阶两点边值问题对称正解的存在性,用不动点指数理论证明了在一定条件下,问题至少存在一个对称正解。
4) positive radial solution
正对称解
1.
We study the existence and structure of entire explosive positive radial solutions for quasilinear elliptic systems (div(u~(m-2)u))=p(x)f(v), div(v~(n-2)v)=q(x)g(u) on R~N, where f and g are positive and non-decreasing functions on (0,∞).
研究了拟线性椭圆型方程组div( um-2 u)=p( x )f(v), div( vn-2 v)=q( x)g(u)在RN上爆破整体正对称解的存在性和解集的性质,其中f和g在(0,∞ )上是正的递增函数。
5) symmetric positive solutions
对称正解
1.
Existence of symmetric positive solutions for second-order four-point boundary value problems with a p-Laplacian operator on time scales
时标上具有p-Laplacian算子的二阶四点边值问题对称正解的存在性
2.
By using the Legget-Williams fixed point theory the existing conditions of the multiple symmetric positive solutions for a second order boundary value problerm are gained and its application is given.
研究了奇异边值问题解的存在性 ,利用Leggett_Williams不动点定理 ,得到了存在多个对称正解的条件 。
3.
This paper applies the fixed point theorem to the obtaining of sufficient conditions for the existence of symmetric positive solutions to a class of second-order singular boundary value problems:-x″=λf(t,x),and x(0)=x(1)=0.
讨论了二阶奇异边值问题:-x″=λf(t,x),x(0)=x(1)=0的对称正解的存在性。
6) symmetric positive definite solution
对称正定解
1.
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper.
讨论了矩阵方程(AX,XB)=(C,D)和AXB=C的对称正定解。
2.
In this paper,we study the problem about the symmetric positive definite solution to a class of mixed-type Lyapunov matrix equations.
本文研究了一类混合型Lyapunov矩阵方程的对称正定解问题。
补充资料:对称与非对称
反映客观事物在结构、功能、时空上的特殊联系的范畴。对称指事物以一定的中介进行某种变化时出现的不变性,非对称指事物以一定的中介进行某种变化时出现的可变性。在自然界中普遍存在,形式多样。对称有空间对称(包括形象对称和结构对称)、时间对称、概念对称等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条