说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正对称组
1)  positive symmetrical characteristic
正对称组
1.
In the paper, positive symmetrical characteristic of equations of mixed elliptic-hyperbolic type is studied by means of conversion.
利用变换证明了一类混合椭圆——双曲型方程可化为正对称组,并且对这一类型的方程进行了推广。
2)  orthorhombic symmetry
正交对称
1.
All the samples are single phase,with orthorhombic symmetry(Pnma),analyzed by XRD.
X射线衍射(XRD)分析表明:所有的样品均为单相,具有正交对称性(Pnma)。
2.
All the samples are single phase, with orthorhombic symmetry (Pnma) , analyzed by XRD with Rietveld Refinement.
X射线衍射(XRD)测量分析表明所有的样品均为单 相,具有正交对称性(Pnma)。
3)  symmetry correction
对称修正
4)  symmetric positive definite
对称正定
1.
Further,the necessary and sufficient condition for the existence of the solution to the inverse problem of matrix equation AX=B in the set of generalized symmetric positive definite matrices is given too with the general form of the solution as well.
本文给出了用低阶矩阵来判定高阶矩阵的广义对称正定的判定定理。
2.
In this paper,some judging criterions for GM- matrices have been presented by using the symmetric positive definite matrices AW + WA~T and W - G~T WG.
这类矩阵在科学计算方面有着重要的作用,文章构造对称正定矩阵AW+WA~T和W-G~TWG给出了矩阵A为GM-矩阵的一些判定准则。
5)  symmetric positive solution
对称正解
1.
In this paper,an existence result of symmetric positive solution for fourth-order boundary value problems is obtained by using the fixed-point index thoery.
讨论了一类四阶两点边值问题u(4)(t)=f(u(t),u(′t),u(″t)),t∈[0,1],u(0)=u(1)=u″(0)=u″(1)=0对称正解的存在性,用不动点指数理论证明了在一定条件下问题至少存在一个对称正解。
2.
The two iterative schemes of symmetric positive solution are studied for a two-point boundary value problem by the help of monotonic technique.
对一类两点边值问题给出了对称正解的两种单调迭代格式,主要工具是单调算子迭代技巧。
3.
In this paper,we discuss the existence of symmetric positive solutions for a kind of for fourth-order two point boundary value problem.
文章讨论了一类四阶两点边值问题对称正解的存在性,用不动点指数理论证明了在一定条件下,问题至少存在一个对称正解。
6)  positive radial solution
正对称解
1.
We study the existence and structure of entire explosive positive radial solutions for quasilinear elliptic systems (div(u~(m-2)u))=p(x)f(v), div(v~(n-2)v)=q(x)g(u) on R~N, where f and g are positive and non-decreasing functions on (0,∞).
研究了拟线性椭圆型方程组div( um-2 u)=p( x )f(v), div( vn-2 v)=q( x)g(u)在RN上爆破整体正对称解的存在性和解集的性质,其中f和g在(0,∞ )上是正的递增函数。
补充资料:对称性匹配组态
分子式:
CAS号:

性质: 指组态函数不仅要满足关于交换的反对称性,而且要满足空间对称性并成为自旋算符的本征函数。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条