1) crossed coproduct bialgebra
交叉余积双代数
1.
The object of this paper is to generalize Molnar s smash coproduct bialgebra to crossed coproduct bialgebra.
将Molnar的半直余积双代数推广到交叉余积双代数,得到交叉余积双代数实现的充要条件,并研究了交叉余积Hopf代数实现的条件。
2) Crossed coproduct coalgebra
交叉余积余代数
3) crossed coproduct Hopf algebra
交叉余积Hopf代数
4) bicrossed coproducts
双交叉余积
5) crossed coproduct
交叉余积
1.
We show that C is a crossed coproduct if and only if C_R is free.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
2.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
3.
By using method of twisted module coalgebras, this paper shows that there are correspondings between the crossed coproducts C× α H and twisted tensor coalgebras ( CH) τ .
设 H 为 k 双代数 ,证明了交叉余积 C×|αH 与扭张量余代数 ( C H) τ存在一一对
6) quasi-cocommutative weak bialgebra
拟余交换双代数
补充资料:代数余子式
代数余子式
(algebraic) cofoctor
代数余子式【(algebraic)即血d匕r;呱响卿洲心搜助uo几.日川.],子式(minor)M的 数 (一l丫十‘detA了卜老,这里M为某n阶方阵A的带有行i,,…,几与列j,,一人的k阶子式;detA式’君是从A划去M的所有行与列后得到的n一k阶矩阵的行列式;s二i,十…十i*,‘习、十…十人·下述La禅aCe窄浮(L aPlaCe‘heorem)成立:如果在一个”阶行列式中任意固定r行,则对应于这些固定行的所有r阶子式与它们的代数余子式的乘积的和等于这个行列式的值.晰注】此LaPlaCe定理通常称为行烈莽的LaPla“尽开(加Pla.develoPment of a determinant).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条