1) creation-annihilation operators
产生-湮灭算符
2) creator and annihilator
产生、湮灭算符
1.
We express the Hamiltomian operater of a charged panical with the creation and annihilation operators in a uniform magnetic field,and obtain Landau energies and wave-functions using the property of creator and annihilator.
把均匀磁场中带电粒子的哈密顿用产生、湮灭算符表示出来,并利用产生、湮灭算符的性质得到了朗道能级及相应的波函数。
3) annihilation operator
湮灭算符
1.
Quantum statistic properties of the eigenstates of the annihilation operator b N - (N≥2) of an non harmonic oscillator are studied.
本文研究了非简谐振子湮灭算符高次幂bN-(N≥2)本征态的量子统计性质。
2.
A method for constructing orthonormalized eigenstates of annihilation operator b 3 - of a non harmonic is presented.
构造了非简谐振子湮灭算符3次幂的正交归一本征态。
3.
Wigner functions for the eigenstates of arbitrary power of annihilation operators were reconstructed using their expressions in Fock presentations.
用在Fock态表象下的Wigner函数重构了湮灭算符任意次幂本征态的Wigner函数。
4) inverse of Boson creation and annihilation operators
玻色产生、湮灭算符的逆算符
5) Annihilation and Creation Operators
产生和湮灭算子
6) annihilation operator a
湮灭算符α
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条