1) phase annihilation operator
相位湮灭算符
2) annihilation operator
湮灭算符
1.
Quantum statistic properties of the eigenstates of the annihilation operator b N - (N≥2) of an non harmonic oscillator are studied.
本文研究了非简谐振子湮灭算符高次幂bN-(N≥2)本征态的量子统计性质。
2.
A method for constructing orthonormalized eigenstates of annihilation operator b 3 - of a non harmonic is presented.
构造了非简谐振子湮灭算符3次幂的正交归一本征态。
3.
Wigner functions for the eigenstates of arbitrary power of annihilation operators were reconstructed using their expressions in Fock presentations.
用在Fock态表象下的Wigner函数重构了湮灭算符任意次幂本征态的Wigner函数。
3) annihilation operator a
湮灭算符α
4) creator and annihilator
产生、湮灭算符
1.
We express the Hamiltomian operater of a charged panical with the creation and annihilation operators in a uniform magnetic field,and obtain Landau energies and wave-functions using the property of creator and annihilator.
把均匀磁场中带电粒子的哈密顿用产生、湮灭算符表示出来,并利用产生、湮灭算符的性质得到了朗道能级及相应的波函数。
5) general annihilation operator
广义湮灭算符
6) Boson annihilation operator
玻色湮灭算符
1.
By using a new parametrization way, =(q y-1)/(q-1), the q Boson annihilation operator was defined, and a new q coherent state was constructed.
以参数化方式[y]=(qy-1)/(q-1)定义q玻色湮灭算符aq,生成相应的q相干态,找出能产生并保持这类q相干态的体系的哈密顿量。
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条