1) Ψ*-condensing map
Ψ*-凝聚映射
1.
The definition of Ψ*Ψ*-condensing map on generalized convex spaces was introduced,and its some properties and fixed point theorems were given,finally existence problems of maximal element and existence problem of equilibrium point in abstract economy system were discussed as their applications.
介绍了一般化凸空间上的Ψ*Ψ*-凝聚映射的定义,并给出了它的一些性质和不动点定理,最后作为它们的应用,讨论了极大元存在问题和在抽象经济系统中的平衡点的存在问题。
2) Mapping ψm
映射ψ~m
3) condensing map
凝聚映射
1.
Under the ordered conditions and noncompactness measure conditions,the existence of positive periodic solution for second-order ordinary differential equation in Banach space was proved by accurately calculating the measure of noncompactness and employing fixed-point index theorems of condensing map.
在一定的序条件及非紧性测度条件下,通过非紧性测度的精细计算,运用凝聚映射的不动点指数理论获得有序Banach空间二阶常微分方程的正周期解的存在性。
2.
Under the nonmonotone conditions,the results of existence of periodic boundary value problem of second order ordinary differential equation in Banach space is obtained by employing measure of noncompactness,degree of condensing map and Sadvoskii fixed point theorem.
在Banach空间中,非线性f(t,u)项关于u非单调条件下,讨论了二阶常微分方程周期边值问题解的存在性,所用的工具是非紧性测度,凝聚映射的拓扑度及Sadovskii不动点定理。
3.
The theory of non-compactness measure and Sadovskii fixed point theorem of condensing map are applied to these problems,and some existence results are obtained.
研究了Banach空间中二阶Neumann边值问题解的存在性,利用非紧性测度的性质和凝聚映射的Sadovskii不动点定理,获得了若干解的存在性定理。
4) condensing mapping
凝聚映射
1.
We study the solvability of 0∈(R(T+C)) making use of condensing mappings′degree theorey.
分别在C(T+I-)1非扩张与C(λT+I)-1紧的情况下,利用凝聚映射的度理论,考虑了方程0∈R(T+C)的可解性问题。
2.
Under an order condition of nonlinear term which could be easily verified, the existence of positive solutions is proved by the topological degree theory of condensing mapping.
讨论了有序Banach空间中的非线性二阶Dirichlet边值问题正解的存在性,并在非线性项满足一个易检验的序条件下,应用凝聚映射的拓扑度理论获得了该问题正解的存在性结果。
3.
Under more general conditions,an existence result of positive solutions was obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
在较一般的条件下用新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果。
5) condensive mapping
凝聚映射
1.
The corresponding results on condensive mapping are discussed in section 3.
其中第二节中考虑了算子的奇性 ,运用 Borsuk定理得出了 m-增生、奇算子的映射定理 ;在第三节中讨论了凝聚映射的相应结
6) mapping of ψ-contraction
ψ-压缩映射
1.
Common fixed point for mapping of ψ-contraction and iterative convergence in topological space;
拓扑空间中ψ-压缩映射的公共不动点定理及其迭代收敛性
补充资料:ψ,ψ-carotene
分子式:
CAS号:
性质: 又称番茄烯。系类胡萝卜素化合物之一,但无维生素A的活性。深红色针状结晶。熔点172~175℃。溶于苯、氯仿、三氯甲烷、二硫化碳、乙醚、石油醚、己烷等。几乎不溶于甲醇、环己烷、乙醇;可在二硫化碳加乙醇中结晶,从二氯甲烷加甲醇中重结晶。其光吸收特征(反式):446nm,472nm,505nm(2250,3450,3150)。番茄红素在溶液中易发生异构化,结晶后不易发生异构,但易自氧化,特别在空气中,故应真空保存于-20℃,暗处或保存在干燥、不含酸的氮气或二氧化碳气体中。番茄红素广泛存在于自然界中,尤以番茄、粉红色葡萄柚、棕榈油中含量较丰富。可从成熟番茄中提取(1kg新鲜成熟番茄约可得0.02g)或由化学合成法制得。为一种红色素。用合成法制得产品,主要作为食品添加剂的人造色素。
CAS号:
性质: 又称番茄烯。系类胡萝卜素化合物之一,但无维生素A的活性。深红色针状结晶。熔点172~175℃。溶于苯、氯仿、三氯甲烷、二硫化碳、乙醚、石油醚、己烷等。几乎不溶于甲醇、环己烷、乙醇;可在二硫化碳加乙醇中结晶,从二氯甲烷加甲醇中重结晶。其光吸收特征(反式):446nm,472nm,505nm(2250,3450,3150)。番茄红素在溶液中易发生异构化,结晶后不易发生异构,但易自氧化,特别在空气中,故应真空保存于-20℃,暗处或保存在干燥、不含酸的氮气或二氧化碳气体中。番茄红素广泛存在于自然界中,尤以番茄、粉红色葡萄柚、棕榈油中含量较丰富。可从成熟番茄中提取(1kg新鲜成熟番茄约可得0.02g)或由化学合成法制得。为一种红色素。用合成法制得产品,主要作为食品添加剂的人造色素。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条