说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 凝聚映射同伦
1)  homotopy of condensing mapping
凝聚映射同伦
2)  Homotopic mapping
同伦映射
1.
A class of nonlinear generalized Landau-Ginzburg-Higgs (LGH) equation was considered by using the homotopic mapping method.
利用同伦映射方法研究了一类非线性广义Landau-Ginzburg-Higgs(LGH)方程。
2.
By using the homotopic mapping method, a class of simplified nonlinear model is studied, and the approximate solution is obtained.
利用同伦映射方法,研究了一类简化型非线性模型。
3)  Aggregate homotopy method
凝聚同伦
4)  condensing map
凝聚映射
1.
Under the ordered conditions and noncompactness measure conditions,the existence of positive periodic solution for second-order ordinary differential equation in Banach space was proved by accurately calculating the measure of noncompactness and employing fixed-point index theorems of condensing map.
在一定的序条件及非紧性测度条件下,通过非紧性测度的精细计算,运用凝聚映射的不动点指数理论获得有序Banach空间二阶常微分方程的正周期解的存在性。
2.
Under the nonmonotone conditions,the results of existence of periodic boundary value problem of second order ordinary differential equation in Banach space is obtained by employing measure of noncompactness,degree of condensing map and Sadvoskii fixed point theorem.
在Banach空间中,非线性f(t,u)项关于u非单调条件下,讨论了二阶常微分方程周期边值问题解的存在性,所用的工具是非紧性测度,凝聚映射的拓扑度及Sadovskii不动点定理。
3.
The theory of non-compactness measure and Sadovskii fixed point theorem of condensing map are applied to these problems,and some existence results are obtained.
研究了Banach空间中二阶Neumann边值问题解的存在性,利用非紧性测度的性质和凝聚映射的Sadovskii不动点定理,获得了若干解的存在性定理。
5)  condensing mapping
凝聚映射
1.
We study the solvability of 0∈(R(T+C)) making use of condensing mappings′degree theorey.
分别在C(T+I-)1非扩张与C(λT+I)-1紧的情况下,利用凝聚映射的度理论,考虑了方程0∈R(T+C)的可解性问题。
2.
Under an order condition of nonlinear term which could be easily verified, the existence of positive solutions is proved by the topological degree theory of condensing mapping.
 讨论了有序Banach空间中的非线性二阶Dirichlet边值问题正解的存在性,并在非线性项满足一个易检验的序条件下,应用凝聚映射的拓扑度理论获得了该问题正解的存在性结果。
3.
Under more general conditions,an existence result of positive solutions was obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
在较一般的条件下用新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果。
6)  condensive mapping
凝聚映射
1.
The corresponding results on condensive mapping are discussed in section 3.
其中第二节中考虑了算子的奇性 ,运用 Borsuk定理得出了 m-增生、奇算子的映射定理 ;在第三节中讨论了凝聚映射的相应结
补充资料:球面的同伦群


球面的同伦群
spheres, homotopy groups of die

  配边.然而,这个序列的第一项的明确的计算还有内在的困难,该困难还未被克服. 111.计算的结果.具有i一陀(2的群二。(S”)同构于上表中的群: 2)具有12簇k(22的群武同构于下表中的群:上料耘栩粼赫粉 关于群兀,(夕)的计算的更进一步的结果,见〔3]在这些群中的奇准素分量的计算中已取得了特别的进展. 例如: 3)如果p是一个奇素数,则群心的p准素分量当k=21汁一l)一1,I=l,…,(夕一l)时是Z,,而对其他的ko除二。,_,(SZm)形如20(有限的)之外是有限的,这个结果称作Sen℃有限定理(Sen七6面记以溺山印代m).从属于合成积的附加结果是西田幂零定理(Nis灿血血potel】Ce小印n万n),那是对每个“‘暇,k>0是幂零的.更进一步,有〔b坛m一M00re一N已治即面成r指数定理(〔b坛泊一Moore-N己讹以foifer exponeni也co众派n),它叙述了对p)5,Abel群:2.*、+z(S,‘+‘)的夕分量有指数夕‘· 对球面的同伦群的一个很完全的讨论,特别对Adan舀一E幻B~谱序列和它的EZ项,见〔A2】.球面的同伦群【姻~,加腼喊柳,明.声of加;c中eProMo功朋,ec翔e印ynu。] 经典同伦理论中研究的一个对象.球面同伦群二,(夕)的计算在那个年代(特别是20世纪印年代)被当作拓扑学中的中心问题之一.拓扑学家希望这些群能成功地完全算出来,并且将有助于解决同伦中的其他分类间题.这些希望没有完全实现.球面的同伦群只被部分地计算出,并且随着广义上同调论(罗nerai达刃coho即10留t坛幻r油)的发展,它们的计算问题变成不再紧迫.然而,当发现了它在微分拓扑学(球面上的微分结构和多维纽结的分类)中的意想不到的用处时,已经汇集的关于这些群的所有信息都不是多余的. 1.一般理论.1)如果i<”或葱>n=1,则兀‘(S”)=0. 2)二。(5.)=Z(Brou认尼r一Hopf定理(Brou叭甩r-Ho讨山印肥m));这个同构将群兀。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条