1) Asymptotic growthing-up
渐近增长性
2) asymptotic growth rate
渐近增长率
3) Progressive Edge-Growth
渐近边增长
4) attenuated growth model
渐近增长模型
1.
This paper presents the first order attenuated growth model with non-uniform sampling intervals by Bayesian method, and gives out its updating recurrence algorithm of prior distributions, forecasting distributions and posteriori distributions with regard to the observational error variance known.
利用贝叶斯预测方法给出采样间隔非均匀情况下的一阶渐近增长模型,当观测误差方差已知时,给出了它的先验分布、预测分布和后验分布的修正递推算法。
6) asymptotic long-term growth rate
投资组合的渐近增长率
1.
Within this model,we study the stable capital distribution of the equity market and the asymptotic long-term growth rate of various portfolios,and illustrate that these results are much better than those of the Atlas model.
我们对该模型进行了改进,证明了满足改进的Atlas模型的市场是渐进稳定的;在改进的Atlas模型下我们得到了市场稳定分布的确定性等价近似以及不同投资组合的渐近增长率与渐近超额增长率,这些结果与Atlas模型的类似结果相比有很大的优点;同时我们使用中国股票市场的交易数据对资本的稳定分布以及某些投资组合的长期平均增长率进行了实证研究,对比市场平均资本分布以及Atlas模型的相应结果,我们改进的Atlas模型在实证上比Atlas模型具有更好的适用性。
补充资料:渐近等分性
随机变量长序列的一种重要特性,是编码定理的理论基础,简称AEP。当随机变量的序列足够长时,其中一部分序列就显现出一种典型的性质:这些序列中各个符号的出现频数非常接近于各自的出现概率,而这些序列的概率则趋近于相等,且它们的和非常接近于1,这些序列就称为典型序列。其余的非典型序列的出现概率之和接近于零。序列的长度越长,典型序列的总概率越接近于1,它的各个序列的出现概率越趋于相等。渐近等分性即因此得名。
C.E.仙农最早发现随机变量长序列的渐近等分性,并在1948年发表的论文《通信的数学理论》中把它表述为一个定理。后来,B.麦克米伦在1953年发表的《信息论的基本定理》一文中严格地证明了这一结果,因此,有人也把它称为麦克米伦定理。
渐近等分性有许多不同的具体形式,但一般地可以表述如下:若X是一个符号表,共有M个不同的符号x1,x2,...,xM ,它们的出现概率分别是p1,p2,...,pM 。对X进行N次独立的选择,于是得到一个长度为N的符号序列;总共有MN个长度为N的不同序列。可以证明,对于给定的两个任意小的数ε>0和δ>0,一定可以找到一个正整数N0(它是X,ε和δ的某种函数),使所有长度为N≥N0的序列可划分为以下两组。第一组包含Aε<MN个序列,其中各个序列都具有几乎相等的出现概率p,且有
1-ε<p·Aε<1
和
式中H是X的符号熵。实际上,当N充分大时,Aε=2NH。第二组包含其余的MN-Aε个序列,它们的出现概率之和小于ε。显然第一组包含的是典型序列,第二组包含的是非典型序列。在各个符号的概率不相等的情况下,序列长度N越大,则Aε与MN的差别越大,而p·Aε与1的差别越小,-logp/N与H的差别也越小。
渐近等分性的意义在于:对于任意取有限个值的随机变量X,当用N次独立选择的方法来形成编码序列时,只要N 取得足够大,就可以只考虑其中Aε个典型序列,而其余所有的非典型序列均可以忽略。
C.E.仙农最早发现随机变量长序列的渐近等分性,并在1948年发表的论文《通信的数学理论》中把它表述为一个定理。后来,B.麦克米伦在1953年发表的《信息论的基本定理》一文中严格地证明了这一结果,因此,有人也把它称为麦克米伦定理。
渐近等分性有许多不同的具体形式,但一般地可以表述如下:若X是一个符号表,共有M个不同的符号x1,x2,...,xM ,它们的出现概率分别是p1,p2,...,pM 。对X进行N次独立的选择,于是得到一个长度为N的符号序列;总共有MN个长度为N的不同序列。可以证明,对于给定的两个任意小的数ε>0和δ>0,一定可以找到一个正整数N0(它是X,ε和δ的某种函数),使所有长度为N≥N0的序列可划分为以下两组。第一组包含Aε<MN个序列,其中各个序列都具有几乎相等的出现概率p,且有
1-ε<p·Aε<1
和
式中H是X的符号熵。实际上,当N充分大时,Aε=2NH。第二组包含其余的MN-Aε个序列,它们的出现概率之和小于ε。显然第一组包含的是典型序列,第二组包含的是非典型序列。在各个符号的概率不相等的情况下,序列长度N越大,则Aε与MN的差别越大,而p·Aε与1的差别越小,-logp/N与H的差别也越小。
渐近等分性的意义在于:对于任意取有限个值的随机变量X,当用N次独立选择的方法来形成编码序列时,只要N 取得足够大,就可以只考虑其中Aε个典型序列,而其余所有的非典型序列均可以忽略。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条