1) fitting an asymptotic growth curve
拟合渐近增长曲线
3) asymptotic curve
渐近曲线
1.
This paper discussed some other characteristics of asymptotic curve through careful analysis, such as the characteristics of asymptotic curve on the surface of translation, the parallel surface and other surface and draw a conclusion that normal line surface of the asympt.
三维欧氏空间中的渐近曲线是局部微分几何中的一种重要的曲线 ,它有许多重要的性质和应用 ,这些在一般的教科书上都有介绍。
2.
In Minkowski space R~(3,1) by employing the method of moving frames to describe construcions and to make local calculations,the equations about asymptotic direction and asymptotic curve of spacelike surface are obtained,and some corresponding results obtained before are extended and improved.
考虑Minkowski空间R3,1中类空曲面的渐近方向与渐近曲线,采用活动标架的方法进行局部计算和整体结构的刻画,得到了渐近方向与渐近曲线的一般方程,推广并改进了已有的结果,并通过具体例子加以阐述。
3.
In this paper,we discuss parallel surfaces of a surface and obtain the sufficient and necessary condition for geodesic (asymptotic curve) of the surface whose corresponding curve is geodesic(asymptotic one) of the parallel surface.
给出平行曲面上对应曲线同时为测地线( 渐近曲线) 的一个充要条件。
4) asymptotic growth rate
渐近增长率
5) Asymptotic growthing-up
渐近增长性
6) Progressive Edge-Growth
渐近边增长
补充资料:渐屈线(平面曲线的)
渐屈线(平面曲线的)
evohite (of a pbne curve)
渐屈线(平面曲线的)【e,浦血何a内I此。口,e);”。几犯-Ta.月oc,0.鱿P二o面」 已知曲线7的曲率中心的集合下.若r二r(s)(其中、是7的弧长参数)是7的方程,则它的渐屈线的方程有如下形状: *r+去,,其中k是曲率而,是下的单位法向量.下图显示了三种典型情形下渐屈线的构造: a)若沿整条曲线k’有固定符号且k不为零;今赚条‘b S0 图c b)若沿整条曲线k’有固定符号且k在s=s。处为零; e)若对于s
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条