说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对流占优微分积分方程
1)  convection-dominated parabolic integrodifferential equations
对流占优微分积分方程
2)  convection dominated equation
对流占优方程
1.
As a phenomenological equation with the characteristic boundary layer, the convection dominated equation is solved by Galerkin s method, namely, the finite element method based on incomplete interpolation.
针对具有边界层现象方程的特点 ,用一种不完全插值有限元方法 ,求解对流占优方程 。
2.
A method of interpolation wavelet is adopted for solving convection dominated equation numerically.
采用内插小波方法数值求解对流占优方程。
3)  convection-dominated Sobolev equations
对流占优Sobolev方程
1.
A least-squares mixed finite element procedure with the method of characteristics for convection-dominated Sobolev equations;
对流占优Sobolev方程的最小二乘特征混合有限元方法
4)  fractional advection-dispersion equation
分数微分对流-弥散方程
1.
A Riemann-Liouville definition based finite element solution for fractional advection-dispersion equation
基于R-L定义的分数微分对流-弥散方程有限元解
2.
The fractional advection-dispersion equation(FADE) is a new theory for simulating solute transport,but it needs to be validated whether the FADE can be directly used to simulate the scale-dependent transport without considering the scale effect of the dispersion.
分数微分对流-弥散方程(FADE)是模拟溶质迁移问题的新理论,但应用FADE来模拟溶质迁移时能否克服弥散的尺度效应尚待验证。
5)  Integro-differential equation
积-微分方程
1.
We establish the comparison theorem of integro--differential equations on infinite interval, and, by applying the lower-upper solution method, prove the existence of extreme solutions for nonlinear first order integro-differential equations on infinite interval in Banach spaces.
建立了无限区间上的积一微分方程的比较定理,用上下解方法证明了无限区间上的Banach空间积-微分方程的初值问题的解的存在性。
2.
In this paper, the following initial value problem for nonlinear integro-differential equationu (t) =f(t, u(t),T1u(t), T,u(t) ) 1u(t)0=XO Iis considred, wbers \Using the method of upper and lower solutions and the monotone iteratiye technique, we obtain existence results of minimal and maximal solutions.
本文讨论非线性积-微分方程初值问题的极值解的存在性。
3.
In this paper,we consider integro-differential equations kith 0<a<1,where p and q are constant.
本文得到了积-微分方程解的级数表
6)  integro-differential equations
积-微分方程
1.
Existence of the solution to singular boundary value problems for second order integro-differential equations;
二阶积-微分方程奇异边值问题解的存在性
2.
Solutions of two-point boundary value problems of integro-differential equations in Banach spaces;
Banach空间积-微分方程两点边值问题的解
3.
On monotone iterative method for the second order two point boundary value problems of integro-differential equations;
二阶积-微分方程两点边值问题的单调迭代法
补充资料:积分微分方程


积分微分方程
integro-differential equation

积分微分方程【加峡卿~由压翻即位叭闰.柱阅;舰.印。-皿.例卜peH姗~oe邓aBHe皿。e」 在微分和积分两种运算符号下都包含未知函数的一个方程.积分方程和微分方程也是积分微分方程. 线性积分微分方程(U几浓r intef卿~d正rerelltial eqUa-tion).设了是给定的一个变量的函数,令 , L·[Ul三答、;‘(‘)U(‘,(x),M夕【Ul二,瓦q,(x)U‘”(y)是带有[a,b1上充分光滑的系数p万和q,的微分表达式,且设K是正方形汇a,blx【“,b]上充分光滑的一个已知函数.形如 b L、。U〕一“丁K(x,,)M,。U ld,+,(x)(,)的一个方程称为线性积分微分方程;又是一个参数.如果(1)中当夕>x函数K(x,夕)二0,则(1)称为带可变积分限的积分微分方程;它可以写成 ::[。]一、丁、(x,,)、,。。]以,+f(x)(2) 0的形式.对(I)和(2)可以提Ca川ly问题(Cauchyproblem)(求满足U(’)(戊)=e‘(i二o,l,…,l一1)的解,这里。*是给定的数,l是L:【U」的阶数,且:盯a,b』),以及各种边值问题(例如,周期解问题).很多情况下(见[3],[4]),对(1)和(2)的间题能够简化,或者甚至可分别地化成第二类Fredholm积分方程(见Fr司比bn方程(Fredhohn叫Uation))或翎t~方程(VOherra eqUa幻o幻).同时,对积分微分方程很多特殊现象产生了,而这些现象对微分或积分方程是不典型的. 最简单的非线性积分微分方程(non一址℃肚访把孚。-dit免rential闪Uation)有形式 打U(x)一、JF(x,,,U(,),…,U‘“,(,,)d,+f(x)·压缩映射原理(conti刁ctingrr以Pp吨pnnciPle),Sd.u-der法(Schauder nr山闭),以及其他的非线性泛函分析方法,用于研究这种方程. 对积分微分方程,也可以研究解的稳定性,本征函数展开,按小参数的渐近展开等问题.偏积分微分方程和带重积分的积分微分方程在实践中经常遇到.BOltZ盯讯nn方程和KO力MoropoB一凡Uer方程是其中的例子.‘什江J吊锐”诚”万程是有慈义的,例如在人口动力学中(fAZ」).偏积分微分方程,即作为积分和偏微分算子两者的自变量出现的多元函数的方程是有价值的,譬如在连续统力学中(【Al],!A3」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条