1)  pointwise convergence
点态收敛性
1.
A general principle governing the pointwise convergence of operator families with the help of maximal operators of weak type are studied.
这些定理是推导Fourier分析中许多算子列点态收敛性的基础。
2)  pointwise
点态
1.
The convergence rate of pointwise strong approximation by the equiconvergent operators of Cesàro means at the indices α∈(λ-1+1/p,λ] for functions in Lp(Σn-1)(1<p≤2) is given in terms of local modulus of continuity,where λ=n-2/2 is the critical index.
用连续模给出了Lp(Σn-1)中函数用其Fourier-Laplace级数的α阶Cesàro平均等收敛算子强逼近的点态收敛速度。
3)  pointwise approximation
点态逼近
1.
A kind of weighted pointwise approximation direct and inverse theorem of unbounded continuous functions;
无界函数加权的点态逼近等价定理
2.
Pointwise Approximation on Baskakov Type Operators;
Baskakov型算子的点态逼近
3.
The purpose is to use the moduli of smoothness ωrφλ(f,t)(0≤λ≤1),to get the results of pointwise approximation equivalent theorem for the combinations of modified Baskakov-Durrmeyer operators.
利用ωrφλ(f,t)(0≤λ≤1),研究了修正的Baskakov型算子线性组合的点态逼近等价定理,得到一般性结果。
4)  pointwise convergence
※点态收敛
1.
If the set-valued mapping is ※ continuous or ※ pointwise equicontinuous,the relationship of the kuratowski convergence,※ pointwise convergence and ※ uniform convergence of set-valued mapping net can be obtained,Which can extend kuratowski convergence of metric space to common topological space.
在集值映射的※连续性或※点态同等连续的条件下,得到了集值映射网的 Kuratowski 收敛、※点态收敛和※一致收敛三者之间的关系,这样就把度量空间的 Kuratowski 收敛推广到了一般的拓扑空间。
5)  Pointwise
点态化
1.
The Pointwise Fuzzy Relations;
点态化的Fuzzy关系
6)  pointwise phenomenon
点态现象
1.
It is also proved that the above supercovergence at the central point of the element is only pointwise phenomenon.
在各向异性网格下,讨论了两类非协调矩形元对二阶椭圆边值问题的某些超逼近性和超收敛性,并证明了在单元中心点这种超收敛性仅为一种点态现象。
参考词条
补充资料:点态收敛


点态收敛
ptintwise convergence

  点态收敛【州n俪sec洲erg印ce;n0TO叹e叹Ita.cxo仄“-Moe,r‘」 函数(映射)序列收敛的一种类型.设f。;X,Y(n二1,2,…),其中X是某集合,Y是拓扑空间(topol卿cal sPace);那么点态收敛意指对任何元素x‘X,点列y。=厂。(x)(n=1,2,…)在空间Y中收敛、对于度量空间(或者更为一般地,一致空问)之间的映射,点态收敛序列有一个重要的子类就是一致收敛序列(见一致收敛(朋饭〕rm convergence))· J’l.口.Ky八p凡B双eB撰【补注】在从X到Y的连续映射空间C(X,y)上,点态收敛的拓扑基可如下得到.取定一个有限集K cx,对每个x‘K,都有Y中包含f(x)的一个开子集;对于给定的厂,其开基邻域是:{g任C(X,Y):g声V、,对所有x〔K},亦见点态收敛的拓扑)(pointwise eonvergenee,toPology of).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。