1) generalized column orthonormal matrix
广义标准列正交矩阵
2) generalized orthogonal matrix
广义正交矩阵
1.
One kind of generalized orthogonal matrix and it s application;
一类广义正交矩阵的性质及其应用
2.
Aim To give the definition of involutory matrix,discuss its properties and crierions,establish the relationships of involutory matrix,generalized symmetrical matrix and generalized orthogonal matrix.
目的给出拟对合矩阵的定义,讨论其性质和判定,研究拟对合矩阵与广义正交矩阵、广义对称矩阵之间的关系。
3.
The concept of orthogonal matrix and four properties of generalized orthogonal matrix in determinant, characteristic solution and adioint matrix were discussed.
推广了正交矩阵 ,并研究了广义正交矩阵在行列式、特征根、伴随矩阵等问题中的四个性
3) generalized orthonormalizing
广义标准正交
4) r-sub-orthogonal matrix
r广义次正交矩阵
1.
The concepts of r-sub-orthogonal matrix are given, and its properties discussed.
给出r广义次正交矩阵的概念,并研究了它的性质。
5) matrix with orthogonal columns
列正交矩阵
6) almost orthogonal matrix
准正交矩阵
1.
In this paper, we defined Almost Orthogonal Matrix, Gave some conditions for a transformation on an Euclidean space being an Almost Orthogonal Transformations, and obtained some new properties of Almost Orthogonal Transformations, which generalize the corresponding results on Orthogonal transformations.
给出了准正交矩阵的概念 ,在文 [1]的基础上研究了Euclidean空间中的变换是准正交变换的几个条件 ,得到了准正交变换的一些新性质 ,推广了有关正交变换的相应结果。
补充资料:正交矩阵
正交矩阵
orthogonal matrix
正交矩阵【份血剧间叮.廿改;opT0r0I.幼1.11四M盯-四从a」 具有单位元l的交换环R上的一个矩阵(Inatrix),其转里矩阵(trans衅ed皿呱)与逆矩阵相同正交矩阵的行列式等于士IR上的所有n阶正交矩阵的集合构成一般线性群(gene阁如c盯grouP)GL。(R)的一个子群.对任何实正交矩阵a,存在一个实正交矩阵c,使得eae一’一d认g【土l,一,士l,a,,一’,arj,其中 }!。05 0 sin。}! a=11一J’J 11。 {{一sm毋,cos毋2 11一个非退化复矩阵a相似于一个复正交矩阵,当且仅当其初等因子(eleITrntary di访sors)系具有下列胜质: 1)对又笋士1,初等因子(x一又)爪和(x一厂‘)“重复相同的次数; 2)每个形如(x土l)2,的初等因子都重复偶数次.【补注】由正交矩阵A关于标准基以x)=Ax(x〔R”)定义的映射盯R”~R”,保持标准内积不变,因此定义了一个正交映射(ortllogonaln‘pp吨).更一般地,若V和W是具有内积<,),,,(,)甲的内积空间,则使得<:(x),二(y)),=(另,y>。的线性映射眠V~W称为正交映射. 任何非奇异(复或实)矩阵M允许一个极分解(polar deeomposition)M=SQ“Q:S:,其中S和S;对称,Q和Q:正交.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条