1) functional estimator
函数估计量
2) function approximation
函数估计
1.
Reinforcement learning function approximation algorithm based on linear average;
基于线性平均的强化学习函数估计算法
3) estimating function
估计函数
1.
Blind source separation based on optimally selected estimating functions;
基于选优估计函数的盲信号分离
2.
Secondly, based on the semiparametric theory, an estimating function is constructed and the corresponding learning algorithms are proposed.
基于此,采用半参数统计方法构造超定盲信号分离的估计函数,给出相应的学习算法;理论证明了该算法具有等变化性和分离矩阵的非奇异特性,并借助于源信号数目未知且动态变化的计算机仿真验证了其有效性。
3.
Firstly, the semiparametric statistical approach is introduced into the BSS, and an estimating function for the semiparametric statistical approach in BSS is proposed, from which a learning rule is obtained.
将半参数统计模型引入源信号个数未知的盲分离中,给出了源信号个数(其值n不大于观测信号的个数m)未知,混合矩阵列满秩时,盲分离半参数统计模型的估计函数,得到了由此估计函数给出的半参数统计学习算法。
4) function estimation
函数估计
1.
The approach can ensure the minimum actual risk of denoised signals in the view of function estimation,overcoming the drawbacks of application of traditional wavelet-denoising approaches.
根据统计学习的结构风险最小化原则和VC维理论,给出一种改进的基于VC维的小波消噪方法,使消噪后信号在函数估计意义下具有最小的实际风险,克服了传统的小波信号消噪方法的应用缺陷。
5) kernel function estimation
核函数估计
6) weighted function estimator
权函数估计
1.
The strong consistency of the nonparametric regression weighted function estimator for positive associated samples is discussed.
在 PA样本下 ,讨论非参数回归模型中权函数估计的强相合性及强一致相合性 。
2.
This paper studies the consistency of weighted function estimator in a multiple nonparametric regression model under martingale sequences.
在鞅误差序列下,研究多元非参数回归权函数估计的相合性,得到比Fan[1]和Geogiev[2]更理想的结论。
补充资料:Bayes估计量
Bayes估计量
Bayesian estimator
Bayes估计量【Bayesi助始廿ma.件;D自狱.。眨..界..] 用BayeS方法(Bayesian aPProach)由观察值对一未知参数所作的估计.统计问题使用这样的方法时,一般都假定未知参数所0 gR“是一具有给定先验分布7r=武do)的随机变量,决策空间D与集合0重合.且损失L(0,d)表示变量0与估计d的偏离.因此,函数L勿,d)通常假定为有形式L勿,d)=a(e)又(口一d),其中又是误差向量0一d的某个非负函数,若k二1,则常取又勿一d)={0一d}“(“>0).最有用且在数学上最方便的是平方损失函数L(口,d)=}‘一d1’.对这一损失函数,Bayes估计量(Ba卿决策函教(Bavesian dedsion function))占’二亡厂(x)定义为使最小总损失 !;‘p‘二·“,一,‘薯必,“一”‘·’2’〕口‘么,叮‘““,达到的函数,或与之等价,了是使最小条件损失 ,母‘E{[口一占(x)]2+“)达到的函数,由此推出,在平方损失函数的场合,B竹es估计量与后验均值占‘(x)=E勿{x)相等,而Bayesj双险(Bayes risk)为 。‘二,占‘)二E!D矿夕}x)]‘此处O(0}劝是后验分布的方差: o(口{x)二任{{口一E(0{x)12!,、}. 例设二=(x,,,二,戈),这里x,,,二,x。为具正态分布N勿,。’)的独立同分布变量,护己知,而未知参数0有正态分布N扭,铲).因为当x给定时口的后验分布为正态N(拜。,T:一、其中 n又。2一十“下一2 灿。二一—,,。一二n口‘一奋了一_ n口一汁~下且万=(x,十一+凡)/。,可知在平方损失函数{分一引’之下,Bayes估计量为占’(x)=线,而Bayes风险则为《二犷六伽铲十护).AH川畔即撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条