1) kernel density function estimation
核密度函数估计
3) The kernel estimation of density function
密度函数的核估计
4) density function estimation
密度函数估计
1.
Wavelet density function estimations based monitoring approach to a class nonlinear systems controlled with the feedback linearizing strategy is suggested.
针对一类基于反馈线性化补偿的非线性控制系统 ,提出一种基于小波密度函数估计的过程监视及故障诊断策略 。
5) kernel function estimation
核函数估计
6) Kernel density estimation
核密度估计
1.
A multimodal background model based on binning kernel density estimation;
基于分箱核密度估计的非参数多模态背景模型
2.
Small target tracking in forward looking infrared imagery based on kernel density estimation
基于核密度估计的前视红外小目标跟踪
3.
A bandwidth selection with recursive method for kernel density estimation and its application
核密度估计中递归方法选择窗宽及其应用
补充资料:功率谱密度估计
随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条