1) linear development
线性发展
1.
Through the analysis of the functional linearity of near one hundred English argumentative essays written by Chinese college students with the help of Toulmin model, the authors reveal the negative effects on linear development if the writer has little topic knowledge.
过去对于线性发展的研究往往集中在跨文化领域,认为线性发展是区分中英文篇章模式的特征之一。
2) nonlinear evolution equations
非线性发展方程
1.
Blow-up of solutions for a class of nonlinear evolution equations;
一类非线性发展方程解的爆破
2.
In this paper,with a view to getting exact solution for nonlinear evolution equations(NLEES),a method for finding a kind of general auxiliary equation is devised.
本文给出了寻找适当的辅助方程的一种较一般化的方法,通过这种方法可以得到一系列的辅助方程,利用这些辅助方程又可以构造出非线性发展方程的许多精确孤波解。
3.
Taking the dispersive long wave equations as an example,a general method for seeking the exact solutions through the homogeneous balance method for the nonlinear evolution equations is presented.
以色散长波方程组为例 ,给出利用齐次平衡法构造非线性发展方程的多种形式准确解的一般途径 。
3) nonlinear evolution equation
非线性发展方程
1.
Blow-up solutions under the third-boundary conditions for a class of nonlinear evolution equations;
一类非线性发展方程在第三类边界条件下的爆破
2.
AGE-3 numerical parallel method for a class of nonlinear evolution equation;
一类非线性发展方程的AGE-3方法和并行计算
3.
AGE numerical parallel method for a class of nonlinear evolution equations;
一类非线性发展方程的AGE方法与并行计算
4) semilinear evolution equation
半线性发展方程
1.
As applications,we establish a criterion for mild solutions to initial value problems of a class of abstract semilinear evolution equations in locally convex spaces.
作为应用,本文建立了一类半线性发展方程的解的存在性结果。
2.
semilinear evolution equations.
利用线性算子半群理论和抽象锥上的不动点定理 ,在合适的条件下建立了偏序Banach空间中半线性发展方程全局正解的存在性结
3.
This paper discusses the existence ofω-periodic solutions for semilinear evolution equationsin an ordered Banach space E.
本文讨论了有序Banach空间E中半线性发展方程 u (t)+Au(t)=f(t,u(t),u(t)),t∈R。
5) nonlinear evolution inclusion
非线性发展包含
6) Linear evolution equation
线性发展方程
1.
Based on idea of a linear operation group applied to the solution to secon order linear evolution equation,the linear operation group is developed by the generating operator of the equation popularized n order matrix and its basic characters are also proved in Banach space,which are the key to the solvability of high order linear evolution equations.
在一个线性算子群应用于二阶线性发展方程求解的思路基础上[1],归纳其中的生成算子为n阶矩阵形式,进一步提出了该生成算子的线性算子群,在巴拿赫空间中证明了这个线性算子群的基本特征,且是高阶线性发展方程求解理论的基础部分。
补充资料:金属材料发展史(见材料发展史)
金属材料发展史(见材料发展史)
history of metallic material
金属材料发展史historyor metalli。material见材料发展史。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条