1) Quasilinear Evolution Equation
拟线性发展方程
1.
On the Cauchy problem of abstract quasilinear evolution equation;
抽象拟线性发展方程的Cauchy问题
2) One-order quasilinear developing equation
拟线形发展方程
3) nonlinear evolution equations
非线性发展方程
1.
Blow-up of solutions for a class of nonlinear evolution equations;
一类非线性发展方程解的爆破
2.
In this paper,with a view to getting exact solution for nonlinear evolution equations(NLEES),a method for finding a kind of general auxiliary equation is devised.
本文给出了寻找适当的辅助方程的一种较一般化的方法,通过这种方法可以得到一系列的辅助方程,利用这些辅助方程又可以构造出非线性发展方程的许多精确孤波解。
3.
Taking the dispersive long wave equations as an example,a general method for seeking the exact solutions through the homogeneous balance method for the nonlinear evolution equations is presented.
以色散长波方程组为例 ,给出利用齐次平衡法构造非线性发展方程的多种形式准确解的一般途径 。
4) nonlinear evolution equation
非线性发展方程
1.
Blow-up solutions under the third-boundary conditions for a class of nonlinear evolution equations;
一类非线性发展方程在第三类边界条件下的爆破
2.
AGE-3 numerical parallel method for a class of nonlinear evolution equation;
一类非线性发展方程的AGE-3方法和并行计算
3.
AGE numerical parallel method for a class of nonlinear evolution equations;
一类非线性发展方程的AGE方法与并行计算
5) semilinear evolution equation
半线性发展方程
1.
As applications,we establish a criterion for mild solutions to initial value problems of a class of abstract semilinear evolution equations in locally convex spaces.
作为应用,本文建立了一类半线性发展方程的解的存在性结果。
2.
semilinear evolution equations.
利用线性算子半群理论和抽象锥上的不动点定理 ,在合适的条件下建立了偏序Banach空间中半线性发展方程全局正解的存在性结
3.
This paper discusses the existence ofω-periodic solutions for semilinear evolution equationsin an ordered Banach space E.
本文讨论了有序Banach空间E中半线性发展方程 u (t)+Au(t)=f(t,u(t),u(t)),t∈R。
6) Linear evolution equation
线性发展方程
1.
Based on idea of a linear operation group applied to the solution to secon order linear evolution equation,the linear operation group is developed by the generating operator of the equation popularized n order matrix and its basic characters are also proved in Banach space,which are the key to the solvability of high order linear evolution equations.
在一个线性算子群应用于二阶线性发展方程求解的思路基础上[1],归纳其中的生成算子为n阶矩阵形式,进一步提出了该生成算子的线性算子群,在巴拿赫空间中证明了这个线性算子群的基本特征,且是高阶线性发展方程求解理论的基础部分。
补充资料:拟线性双曲型方程和方程组
拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems
尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条