说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟等距映照
1)  quasiisometric mapping
拟等距映照
1.
In this paper,it is proved that the quasiisometric mapping in the boundary of Jordan domain D Rn can be extended to D under some conditions.
本文证明了Jordan域的边界上的拟等距映照在一定条件下可以扩张为D上的拟等距映照,该结果是F。
2)  quasi isometric mapping
拟等距映射
1.
It studies that Finsler manifold with constant flag curvature(CFC) K=c ≤0 of completely and simply connected is in existence and uniqueness under quasi isometric mapping,and the necessary and sufficient condition that Finsler manifold with flag curvature K ≤0 of completely and simply connected in CFC is given.
研究了常旗曲率(k≤0)的单连通完备Finsler流形在拟等距映射下的存在唯一性,同时给出了单连通完备非正旗曲率的Finsler流形是常旗曲率Finsler流形的充要条
3)  Φ-quasi-isometrics mapping
Φ-拟等距映射
1.
Then it is proved that L~(μ)-averaging domains are invariant under some mappings, such as k-quasic-isometrics mapping, Φ-quasi-isometrics mapping, etc.
首先用Whitney覆盖来刻画L~(μ)一平均域,然后证明了在K-拟等距映射、Φ-拟等距映射和K-拟共形映射之下,L~(μ)一平均域的不变性。
4)  equivariant maps
等变映照
5)  isometry [英][ai'sɔmitri]  [美][aɪ'sɑmətrɪ]
等距映射
1.
We obtain that any surjective isometry between the unit spheres of normed space E and l~1(F)can be extended to be a linear isometry on the whole space E,and give an affirmative answer to the corresponding Tingley s problem.
研究赋范空间E和l~1(Γ)的单位球面之间的等距映射的延拓,得到E和l~1(Γ)的单位球面之间的满等距映射可以延拓为全空间E上的实线性等距算子,从而肯定地回答了相应的Tingley问题。
2.
We first obtain some sufficient conditions for an isometric mapping defined on the unit sphere(or ball)of aβ-normed space(0<β■1)can bc extended to be a linear isometry on the whole space.
本文得到了赋β-范空间(0<β■1)的单位球面(或球)上的等距映射可以延拓为全空间上的线性等距映射的一些充分条件,然后在赋β-范线性空间E中研究(λ,Ψ,2)-等距映射的延拓问题,主要结果为:正齐性映射V_0:B_1(E)→B_1(E)是(1,Ψ,2)-等距的充要条件为‖V_0x‖■‖x‖,■_x∈B_1(E),推广了Zhang L。
6)  isometric mapping
等距映射
1.
In the paper,based on the theories of linear algebra,the author introduces some properties about isometric fransformation and isometric mapping in N dimensional euclidean spac
运用线性代数理论,给出n维欧氏空间中等距变换与等距映射的一些性质。
2.
The important precondition of Isomap is supposing that there is an isometric mapping between the data space and the parameter space.
Isomap方法的一个重要前提是假设数据空间与参数空间之间存在等距映射。
3.
The proposed approach utilizes geodesic distance to denote the difference between sample vectors,and then uses a new nonlinear dimensionality reduction algorithm:isometric mapping(ISOMAP) to find intrinsic geometry structure hiding in users keystroke patterns space.
基于等距映射(ISOMAP)非线性降维算法,提出了一种新的基于用户击键特征的用户身份认证算法,该算法用测地距离代替传统的欧氏距离,作为样本向量之间的距离度量,在用户击键特征向量空间中挖掘嵌入的低维黎曼流形,进行用户识别。
补充资料:映照
1.呼应。 2.照射;映射。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条