1) near identity map
拟恒等映射
2) identity mapping
恒等映射
3) quasi isometric mapping
拟等距映射
1.
It studies that Finsler manifold with constant flag curvature(CFC) K=c ≤0 of completely and simply connected is in existence and uniqueness under quasi isometric mapping,and the necessary and sufficient condition that Finsler manifold with flag curvature K ≤0 of completely and simply connected in CFC is given.
研究了常旗曲率(k≤0)的单连通完备Finsler流形在拟等距映射下的存在唯一性,同时给出了单连通完备非正旗曲率的Finsler流形是常旗曲率Finsler流形的充要条
4) Φ-quasi-isometrics mapping
Φ-拟等距映射
1.
Then it is proved that L~(μ)-averaging domains are invariant under some mappings, such as k-quasic-isometrics mapping, Φ-quasi-isometrics mapping, etc.
首先用Whitney覆盖来刻画L~(μ)一平均域,然后证明了在K-拟等距映射、Φ-拟等距映射和K-拟共形映射之下,L~(μ)一平均域的不变性。
5) identity mapping
恒等映像
6) identity mapping
恒同映射
补充资料:恒等映射
集合a到a自身的映射i,若使得i(x)=x对于一切x∈a成立,这样的映射i被称为a上的恒等映射。
显然恒等映射是唯一存在的。如果从a到a自身的一个映射f是一对一的,那么f^-1存在,并且有f☉f^-1=f^-1☉f=i,即映射与其逆映射乘积可交换,且等于恒等映射。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条