1) infinite matrix ring
无穷矩阵环
1.
We discuss derivation on infinite matrix rings, and prove that every derivation ofinfinite matrix rings with a finite number of nonzcro entries on a ring R can be represented asthe sum of two special derivations.
讨论无穷矩阵环上的导子,证明了环R上有限个元素不为零的无穷矩阵坏的每个导子均可表示为两个特殊导子之和。
2) infinite matrix
无穷矩阵
1.
The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted.
研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。
2.
Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ.
λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数。
3.
This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants.
指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。
3) infinite-order linear equations
无穷阶矩阵
4) infinitesimal transfer matrix
无穷小转移矩阵
5) infinite matrix transformation
无穷矩阵变换
1.
Using Antosik-Mikusinski basic matrix theorem? and the subset family, for a type of mapping matrix, a series of matrix transformation theorems is obtained, and the characterizations of a class of infinite matrix transformations is also derived.
利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵,获得了一系列矩阵变换定理,并且给出了一类无穷矩阵变换的刻划,补充和完善了非线性矩阵变换定理。
2.
The decisive breakthrough in research of infinite matrix transformation is that the action of continuous linear operators in Banach Space on vector sequence, which was started at 1950 by A.
无穷矩阵变换研究上的决定性突破是1950年A。
3.
From the Antosik-Mikusinski basic matrix theorem and the subset family,for a type of mapping matrix,an infinite matrix convergence theorem is obtained,and the stronger characterizations of a class of classical infinite matrix transformations were also derived.
利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵获得了一个无穷矩阵收敛定理,并且给出了一类经典无穷矩阵变换的更强刻划。
6) infinite matrix algebra
无穷矩阵代数
1.
A note of infinite matrix algebras;
无穷矩阵代数的一个注记
补充资料:矩阵环
矩阵环
matrix ring
矩阵环【maoix ri.唱;Malp“”Ko几‘”o」,全矩阵环(闻matrix nng) 环R上具有固定阶数的所有方阵组成的环.R上(nxn)维矩阵的环记为R。或从(R).遍及本条,R总是一个含单位元的结合环(见结合环与结合代数(assoc浏二11n邵and al罗bras))· 环R。同构于拥有n个元素的基的自由右R模M的所有自同态的环EndM.矩阵E。=diag【l,…,11为R。内的单位元.含单位元1的结合环A同构于Rn,当且仅当在A中存在矿个元素eij(i,j二1,…,n)的集合,这些元素满足下列条件: 1)e。e*,一占,*e.,,艺e‘:e,‘一l; j=1 2)A中元素。。的集合的中心化子同构于R· R,的中心重合于Z(R)E。,其中,Z(R)为R的中心;对n>1,环R。是非交换的. 环R。的乘法群(所有可逆元组成的群)称为一般线性群(罗nera川in(汾r grouP),记为GL(n,R).R。的一个矩阵在R。中可逆,当且仅当它的诸列组成R上所有(nxl)维矩阵的自由右模的基.如果R。是可交换的,则R。中矩阵a的可逆性等价于它的行列式deta在R中的可逆性.等式(R。)。二R。。成立. 环R。是单的,当且仅当R是单的,因为R。中双边理想均具有形式k。,这里,k是R中任一双边理想一个A“血l环(Artinian rulg)是单的,当且仅当它同构于某除环上的矩阵环(W记derburn沪迁 till定理(W曰derb切rn一Anjll th(幻化m)).如果了(R)表示环R的J自co加阅根(Jaco忱on mdical),则J(M。(R))=M。(J(R)).因此,半单环R上的每一个矩阵环总是半单的.如果R是正则的(亦即如果对每一个a‘R,有b。R使得aba=a),则R。亦然.如果R是含有不变基数的环,这就是说,在每个自由R模的任一基内元素个数不依赖于基的选择,则R。也有这个性质、环R与R。按森田意义是等价的(见森田割介(Morita eq山词ence)):R模的范畴等价于R。模的范畴.然而,投射R模是自由的事实不必导出投射R。模也是自由的.例如,如果R是域且。>l,则存在若干有限生成的投射R。模,它们不是自由的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条