说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部复中值定理
1)  Local mean value theorem
局部复中值定理
2)  local central limit theorem
局部中心极限定理
3)  mean value theorem
中值定理
1.
Popularization of the different Thial mean value theoreme;
微分中值定理的一种推广
2.
On the converse proposition of higher order differential mean value theorem;
关于高阶微分中值定理的逆命题
3.
Asymptotic property of median for the mean value theorems;
中值定理“中间值”的渐近性
4)  theorem of mean
中值定理
1.
A note on the teaching of Lagrange theorem of mean;
微分中值定理教学的一点注记
2.
It also puts forward a united extended theorem of famous Cauchy theorem of mean and Taylor theorem of mean.
同时还给出了著名的Cauchy中值定理与Taylor中值定理的一个统一的推广定理。
3.
In this article,a universal method of constructing the auxiliary function is made from the proof of something relevant to the theorem of mean and the theorem of zeros,which is helpful to the learners to master the skills of constructing the auxiliary function and improve the ability in proofing.
通过中值定理和零点定理等相关问题的证明过程,给出了构造辅助函数的一般思路,以此帮助初学者快速掌握构造辅助函数的方法和技巧,提高他们解答证明题的能力。
5)  mid-value theorem
中值定理
1.
An elementray proof of the mid-value theorem in a non-atomic and σ-finite measure space is given by structuring.
对非原子σ-有限测度空间上的中值定理给出一个构造性的初等证明。
2.
This paper explores the expressing problem of broad-sense F-integ r al and provides several theorems: the expression of theorem of truncated functio n, mid-value theorem and rearrangement-converting theorem.
本文探讨了广义F积分的表示问题,给出了几个表示定理:截断函数表示定理、中值定理、重排转化定理。
3.
The mid-value theorem is important in the development of Mothematical analysis.
中值定理在数学分析的发展中起到了重要作用,文章的主要工作是给出了关于对称导数的中值定理。
6)  mean-value theorem
中值定理
1.
Study on generalizing mean-value theorem and asymoptic property of mean-value;
中值定理的推广及其“中值”渐近性
2.
Constructing assistant functions in Proofing the Mean-Value Theorem;
中值定理证明中辅助函数的构造
3.
A Now Proof of the Lagrange Mean-value Theorem;
Lagrange中值定理的另一证明
补充资料:柯西中值定理

如果函数f(x)及f(x)满足:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导;

(3)对任一x∈(a,b),f'(x)≠0,

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[f(b)-f(a)]=f'(ζ)/f'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条