说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 共形与射影映射
1)  conformal and projective change
共形与射影映射
2)  conformal mapping
共形映射
1.
By Complex Mapping theory, doing mutual numerical calculation to finite odd and even interpolation points on the non-circle cross-section profile of special-shaped products, the conformal mapping function which can mutually transform cross-section region into unit dish region is set up.
应用共形映射理论,在异型材非圆截面轮廓上,通过有限奇偶插值点的相互数值求解,建立异型材截面域与单位圆域相互转化的共形映射函数。
2.
According to the complex conformal mapping principle, a systemic modeling was made on the extruding die for special-typed metals and the plastically deforming metals.
采用复变共形映射理论 ,对异型材挤压模及金属塑性变形体进行系统建模 ,并建立塑变形体的能量方程 ,根据极值原理 ,得到异型材挤压模优化设计参
3)  conformal mappings
共形映射
4)  quasiconformal mapping
拟共形映射
1.
Characterization of quasiconformal mappings on Heisenberg group by Royden algebra;
Heisenberg群上的拟共形映射的Royden代数刻画
2.
On the Julia direction of quasiconformal mapping;
关于拟共形映射的Julia方向
5)  quasiconformal mappings
拟共形映射
1.
Extremal mappings is the main topics in the theory of quasiconformal mappings.
拟共形映射的极值问题是拟共形映射理论中的重要课题,将考虑曲面R=Ui∈IRi上的极值问题,其中每个Ri为双曲Riemman曲面,Ri∩Rj=,i≠j,I为可数非空指标集。
2.
The theory of quasiconformal mappings in the complex plane is well developed and plays important roles in study of Teichmuller spaces, Riemann surfaces, Fuchian group and complex dynamic systems, etc.
拟共形映射理论在Teichmüller空间、Riemann曲面、Fuchian群和复动力系统中都有重要的应用。
3.
The present dissertation consisting of four chapters is concerned with some problems in the inner radius of univalence and a Schwarz type theorem for quasiconformal mappings.
区域的单叶性内径是单叶函数,拟共形映射与万有Teichm(u|¨)ller空间中的核心问题之一,它也是目前复分析学者们比较感兴趣的研究问题之一。
6)  quasi-conformal mapping
拟共形映射
1.
In this paper,According to synthesis principle of extremal length on annulus and the dilatation quotient of quasi-conformal mapping,we get the generalization of lamma 1.
通过圆环上极值长度的合成原理及K-拟共形映射的局部伸缩商得到性质:若f∶{z|r1<|z|
补充资料:边界对应(共形映射下的)


边界对应(共形映射下的)
oundary correspondence (under confonnal mapping)

  边界对应(共形映射下的)l加扣nda叮“斌比s侧翔de毗(皿血r仪.rom.lm即pi呢);cooT一eTeT.“e rpan.”nP“劝皿加p秘oM oTO6Pa招翻11“l 有限连通区域G到z平面内区域D的单叶共形映射f的一个性质,它包含如下事实:f可以延拓为G和D分别经某种紧化的百与万之间的同胚(h omeomor-phism),即f引出边界J\G与万\D之间的一个同胚.对于G和D的常义(Euclid)边界刁G与沁,并不总有此性质,例如,圆盘K的共形映射引出aK与沁之间的同胚只限于切同胚于圆周的情形. 有几种已知的单连通区域紧化方法,它们具有共形映射下的边界对应性质.历史上最早的是Carath改吐〕ry犷枣(Cara‘h胡叼ex‘en‘ion,见[l],亦见[2])·这是最直观的紧化方法,常用于共形映射和其他映射的研究.c.Carath改对ory把依这一方法得到的边界元称为素端(见极限元(hmit elements)).关于单连通区域在可变共形映射下的边界对应理论也已得到发展(见【3』).【补注】关于共形映射下的边界对应与素端的公认的英文文献是[All一[A3].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条