1) strong nilpotent element
强诣零元
2) strongly nil radical
强诣零根
1.
The problem of existence of strongly nil radicalin in fed Γ-ring was solved byusing the theory of finit type in the theory of dynamical systems, and the stronger conclusion was obtained by induced the concept of strongly nil ideal of finit type.
利用符号动力系统中关于有限型子转移的若干深刻结果,得到结论:有限个元素的Γ-环-定存在强诣零根。
2.
In this paper, we defined the weaker Γ_N-ring, and proved that there exits a strongly nil radical N in any weaker Γ_N-ring M.
本文定义了Weaker Γ_N-环,论证了在这个环M中必有强诣零根N,但M/N未必强诣零半单,故定义了B-诣零根N_B,M/N_B是强诣零半单的,最后给出了强诣零半单Weaker Γ_N-环的结构定理。
3) nil ideal
诣零理想
1.
In this paper, the definition of nil radical of zero normal NCD-ring R is given, and the proof is made for that nil radical n(R) is the greatest ideal of R and R / n(R)has no non-zero nil ideals when n(R) is the smallest ideal of R.
本文给出零正规NCD-环R的诣零根n(R)的定义,完成了“零正规NCD-环R的诣零根n(R)是R的最大理想及n(R)是使商环R/n(R)无非零诣零理想的最小理想”的证明。
4) Nil ring
诣零环
5) N-nil ring
N-诣零环
6) nil radical
诣零根
1.
Those are strongly nil radical N S , quasi strongly nil radical N QS ,nil radical N ,quasi nil radical N Q and B nil radical N B (Baer module nil radical).
本文旨在系统阐述WeakerΓN-环的五个诣零根。
2.
This paper show: if M is a ring with the prime radiCal P(M), the socle Soc(M),the nil radical N(M) and the Levitzki nil radical L(M),then regarded as a Pring with P=M,Pp(M)=P(M),Socp(M)=Soc(M),Np(M)=N(M) and LP(M)=L(M).
证明了如果M是一个环,具有素根P(M),底座Soc(M),诣零根N(M)和Levitzki诣零根L(M),则M作为一个Γ-环(取Γ=M)有:P(M)=PΓ(M),Soc(M)=SocΓ(M),N(M)=Nr(M)和L(M)=LΓ(M
3.
In this paper, the definition of nil radical of zero normal NCD-ring R is given, and the proof is made for that nil radical n(R) is the greatest ideal of R and R / n(R)has no non-zero nil ideals when n(R) is the smallest ideal of R.
本文给出零正规NCD-环R的诣零根n(R)的定义,完成了“零正规NCD-环R的诣零根n(R)是R的最大理想及n(R)是使商环R/n(R)无非零诣零理想的最小理想”的证明。
补充资料:诣零Lie代数
诣零Lie代数
lie algebra,nil
诣零lie代数t价习酬n,血;瓜H~6p‘】 域k上的一个疏代数g,有函数东gxg一N,使得对任意x,夕任g有(adx)”(’,y)(夕)二0.其中(adx)(y)=汇x,yl.对于诣零L记代数的主要问题涉及关于g,k,”的使g为(局部)幂零的条件(见幂零lie代数(Lieal罗腼,nilpote泊t)).一个k上有限维的诣零Lie代数是幂零的.另一方面,在任意域上都有有限生成的诣零代数不是幂零的(【11).设n是个常数.如果C比叮k=O或n簇p+1,其中p“〔加ark>0,诣零Lie代数必为局部幕零的(KoCTP皿阳定理(K璐七正加th印-此m),【2]).在g是局部可解的情形下,局部幂零性亦然保持.如果n)p一2,一个无限生成的诣零Lie代数不一定是幂零的(见【31),且对于n)p十l,在可解性条件之下非幂零性仍可出现.最近,E .H.3e~HoB证明了,如果O坦rk=O,诣零Lie代数是幂零的(见【6』),一且如果。>p+l,则诣零代数也是局部幂零的.特征p>O的域k上的诣零赚代数的研究与加功函de问题(Bun书止prob】。刀)密切相连.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条