1) nil BCI_algebra
诣零BCI-代数
2) Nil BCI algebra
诣零BCI代数
3) BCI-algebra
BCI-代数
1.
Complete classification of proper BCI-algebras with order 6;
6阶真BCI-代数的分类
2.
Intuitionistic Fuzzy Filters of BCI-algebras;
BCI-代数的直觉模糊滤子
3.
The Structure of Proper BCI-algebras with Order n≤5 and Condition(S);
阶n≤5有条件(S)的真BCI-代数结构
4) BCI-algebra
BCI代数
1.
The status and significance of BCK/BCI-algebras in logic algebras are summarized.
综述BCK/BCI代数在逻辑代数中的地位与意义,回顾所知国内外学者在该领域的一些主要工作,介绍了BCK/BCI代数理论中的一些概念、术语和成果,篇末罗列较丰富的参考文献,期望对年轻的学者有所帮助。
2.
The paper introduces some new BCY algebras and studies the equivalence class (relative to "=") of several BCY algebras and proves that the set of the equivalence class forms respectively a BCI-algebra, a BCK-algebra or a commutative BCK-algcbta.
在“减法系统Ⅰ”基础上,引入其它一些BCY代数并研究某些BGY代数的等价类(关于“=”),并证明了等价类的集合分别形成BCI代数、BCK代数或可换BCK代数。
5) weak BCI-algebra
弱BCI-代数
1.
In this section,I introduce four kinds of weak BCI-algebras which are weaker than the BCI-algebra and discuss their equational conditions.
引入比BCI-代数条件更弱的四种弱BCI-代数,讨论它们的等价条件,并给出弱BCI-代数的一种二元运算"+:"x+y=x*(x*y),讨论了与这种运算相关的可分配性,进而四种弱BCI-代数在可分配下得到统一。
6) BCI-algebras
BCI-代数
1.
On Orbits in BCI-algebras;
关于BCI-代数中元素的轨道
2.
BCI-algebras were introduced by Kiyoshi Iséki in 1960 s and they usually are regarded as algebraic formulations of BCIsystem in the combinatory logic.
通常,人们认为Kiyoshi Iséki在20世纪60年代引入的BCI-代数是组合逻辑中BCI逻辑的代数对等物。
3.
In this paper, we introduce the concept of W n-ideals of BCI-algebras and prowe the W n satisfies the properties of radical.
本文引入了BCI-代数的Wn-理想 ,并证明了Wn 具有根性 ,而且给出了Wn-根代数的结构特
补充资料:诣零Lie代数
诣零Lie代数
lie algebra,nil
诣零lie代数t价习酬n,血;瓜H~6p‘】 域k上的一个疏代数g,有函数东gxg一N,使得对任意x,夕任g有(adx)”(’,y)(夕)二0.其中(adx)(y)=汇x,yl.对于诣零L记代数的主要问题涉及关于g,k,”的使g为(局部)幂零的条件(见幂零lie代数(Lieal罗腼,nilpote泊t)).一个k上有限维的诣零Lie代数是幂零的.另一方面,在任意域上都有有限生成的诣零代数不是幂零的(【11).设n是个常数.如果C比叮k=O或n簇p+1,其中p“〔加ark>0,诣零Lie代数必为局部幕零的(KoCTP皿阳定理(K璐七正加th印-此m),【2]).在g是局部可解的情形下,局部幂零性亦然保持.如果n)p一2,一个无限生成的诣零Lie代数不一定是幂零的(见【31),且对于n)p十l,在可解性条件之下非幂零性仍可出现.最近,E .H.3e~HoB证明了,如果O坦rk=O,诣零Lie代数是幂零的(见【6』),一且如果。>p+l,则诣零代数也是局部幂零的.特征p>O的域k上的诣零赚代数的研究与加功函de问题(Bun书止prob】。刀)密切相连.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条