1) rational interpolation problem
有理插值问题
1.
Following a former paper of the first author joint with Zhao Bin the pres- ent report deals with the completesolution to the general rational interpolation problem in scalar case.
<正> 文献[1]应用Lwner与Hankel矩阵解法得出一般有理插值问题的McMillan次数小于插值点个数N(含重数)的所有真有理解及其参数表示。
2) Minimal rational interpolation problem
有理函数极小插值问题
4) rational interpolation
有理插值
1.
On rational interpolation to |x| at the adjusted Newman nodes;
基于调整的Newman型结点组对|x|的有理插值逼近
2.
Application of exponential splines and rational interpolation to the pricing of zero-coupon bonds;
指数样条和有理插值在零息票债券定价中的应用
3.
By analysing to the given data of the rational interpolation,an important property is proven,which expresses the relation between degree of the rational interpolants and the given data.
通过对有理插值给定型值特点的分析,得到有理函数插值的一个重要性质:描述了有理插值函数的阶与给定型值的关系。
5) generalized interpolation problem
广义插值问题
1.
In the paper, a generalized interpolation problem is consided, in which the interpolation condition is the integral values on subintervals.
本文考虑一种广义插值问题,插值条件为小区间上的积分值,以弥补现有的插值方法在L2空间不再适用的不足,除了多项式插值外,还讨论了两种一次样条插值方法。
6) linear interpolation problem
线性插值问题
1.
The linear interpolation problem(LIP) for a class of matrices E ask for which pairs of vectors x,y there exists a matrix A∈E such that Ax=y.
关于一类矩阵 E的线性插值问题 ,要求对于一对向量 x,y存在一个矩阵 A∈E,使得 Ax=y。
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条