1) The structural matrix ring
构造矩阵环
2) build matrix
构造矩阵
1.
The paper introduces the functions of Matlab in matrix operations,demonstrats how to build matrix,to get related information about matrix,to accomplish matrix calculation using Matlab.
演示了用Matlab构造矩阵,获取矩阵的相关信息,进行矩阵运算的方法,阐述了Matlab在数学知识的机器学习方面的重要性。
3) matrix construction
矩阵构造
1.
The expressions of matrix construction by using the singular value decomposition (SVD) are applied to the physics parameter identification of dynamic model.
通过矩阵奇异值分解得到矩阵构造的表达式 ,并将其应用于动力模型物理参数识别问题· 根据矩阵构造表达式的特点 ,可以使参数识别模型降阶 ,降阶后的模型与原模型之间的数学和物理性质有明确的对应关系 ,避免了为忽略高阶频率而采用缩聚方法造成的误差· 最后 ,数值算例获得满意的结
4) Fundamental construction matrix
基本构造矩阵
5) construction of check matrix
校验矩阵构造
6) Constitution of idempotent matrix
幂等矩阵的构造
补充资料:矩阵环
矩阵环
matrix ring
矩阵环【maoix ri.唱;Malp“”Ko几‘”o」,全矩阵环(闻matrix nng) 环R上具有固定阶数的所有方阵组成的环.R上(nxn)维矩阵的环记为R。或从(R).遍及本条,R总是一个含单位元的结合环(见结合环与结合代数(assoc浏二11n邵and al罗bras))· 环R。同构于拥有n个元素的基的自由右R模M的所有自同态的环EndM.矩阵E。=diag【l,…,11为R。内的单位元.含单位元1的结合环A同构于Rn,当且仅当在A中存在矿个元素eij(i,j二1,…,n)的集合,这些元素满足下列条件: 1)e。e*,一占,*e.,,艺e‘:e,‘一l; j=1 2)A中元素。。的集合的中心化子同构于R· R,的中心重合于Z(R)E。,其中,Z(R)为R的中心;对n>1,环R。是非交换的. 环R。的乘法群(所有可逆元组成的群)称为一般线性群(罗nera川in(汾r grouP),记为GL(n,R).R。的一个矩阵在R。中可逆,当且仅当它的诸列组成R上所有(nxl)维矩阵的自由右模的基.如果R。是可交换的,则R。中矩阵a的可逆性等价于它的行列式deta在R中的可逆性.等式(R。)。二R。。成立. 环R。是单的,当且仅当R是单的,因为R。中双边理想均具有形式k。,这里,k是R中任一双边理想一个A“血l环(Artinian rulg)是单的,当且仅当它同构于某除环上的矩阵环(W记derburn沪迁 till定理(W曰derb切rn一Anjll th(幻化m)).如果了(R)表示环R的J自co加阅根(Jaco忱on mdical),则J(M。(R))=M。(J(R)).因此,半单环R上的每一个矩阵环总是半单的.如果R是正则的(亦即如果对每一个a‘R,有b。R使得aba=a),则R。亦然.如果R是含有不变基数的环,这就是说,在每个自由R模的任一基内元素个数不依赖于基的选择,则R。也有这个性质、环R与R。按森田意义是等价的(见森田割介(Morita eq山词ence)):R模的范畴等价于R。模的范畴.然而,投射R模是自由的事实不必导出投射R。模也是自由的.例如,如果R是域且。>l,则存在若干有限生成的投射R。模,它们不是自由的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条