说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟Excellent扩张
1)  Quasi-excellent extension
拟Excellent扩张
2)  Excellent extension
Excellent扩张
1.
Excellent extensions and Smach products;
Excellent扩张与Smach积
2.
In this paper,author had discussed two properties of Gorenstein Injective modules on Excellent extension rings.
在Excellent扩张环上对Gorenstein内射模在两个环上的性质进行了比较,给出结论:若环S是R的Excellent扩张,则sM∈G-InjRM∈G-Inj,且GidsM=GidRM。
3)  graded excellent extension
分次Excellent扩张
1.
The concept of graded excellent extension of graded rings is introduced.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
4)  Excellent extension of ring
环的Excellent扩张
5)  quasi-excellentextension
拟优扩张
1.
It is proveda rightS-moduleM S is a generalizedprojectivemoduleif and only if M S is wheneverring extensionS≥R is a quasi-excellentextensionand a finitetriangularextension.
引进了广义投射模的概念,给出了广义投射模的若干刻划,证明了广义投射模与FP-内射模在Morita对偶下互为对偶,同时证明了当环扩张S≥R是有限三角扩张及拟优扩张时,模MS为广义投射模当且仅当MR为广义投射模。
6)  semi-pseudoorder extension
半拟序扩张
补充资料:极大扩张和极小扩张


极大扩张和极小扩张
maximal and minimal extensions

  极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条