1) quasi-nonexpansive mappings
拟非扩张映象
1.
In this paper, a new sufficient and necessary condition for Ishikawa iterative sequences with random error to converge to fixed points of asymptotically quasi-nonexpansive mappings is given.
给出了Banach空间中具随机误差Ishikawa迭代序列收敛于渐近拟非扩张映象的不动点的新的充分和必要条件。
2) asymptotically quasi-nonexpansive mappings
渐近拟非扩张映象
1.
In banach space,we have proved a sufficient and necessary condition for three steps iterative(processes with errors for asymptotically quasi-nonexpansive mappings to converge to coupled fixed point.
在Banach空间中,证明渐近拟非扩张映象带误差的三步迭代列收敛于耦合不动点的充要条件。
2.
Some necessary and sufficient conditions that Ishikawa iterative sequence convergent to the fixed points for asymptotically quasi-nonexpansive mappings in the convex metric space are given.
给出了凸度量空间中渐近拟非扩张映象的Ishikawa型迭代序列收敛于不动点的充要条件,所得结果推广、改进和包含了刘启厚[1]等人的最新成果。
3.
This paper studies the iterative approximation problem of fixed point for a family of finite asymptotically quasi-nonexpansive mappings and quasi-uniform L-lipschitz operators and gives the sufficient and necessary condition for the Ishikawa iterative sequence with errors strongly convergent to common fixed point.
研究了Banach空间中有限个渐近拟非扩张映象及拟一致L-lipschitz算子不动点的迭代逼近问题,并给出带误差的Ishikawa型迭代序列强收敛于其公共不动点的充要条件。
3) asymptotically quasi-nonexpansive type mapping
渐近拟非扩张型映象
1.
The strong convergence of Ishikawa iterative sequences for asymptotically quasi-nonexpansive type mappings;
渐近拟非扩张型映象的Ishikawa迭代序列的强收敛性
2.
In the paper,we obtain some iterative approximation theorems of fixed points for asymptotically quasi-nonexpansive type mapping and asymptotically nonexpansive type mapping with error member in uniformly convex Banach space without the con- dition"for ■ε>0,■n_0∈N_+,■n≥n_0 and ■x∈D,suth that‖T~nx-T~(n+1)x‖<ε.
本文在去掉条件"T在D上一致渐近正则"的情况下,在一致凸Banach空间中给出了几个渐近拟非扩张型映象和渐近非扩张型映象不动点的迭代逼近定理。
3.
This paper studied the iterative approximation problem of fixed points for asymptotically quasi-nonexpansive type mappings with mixed errors in uniformly convex Banach space.
研究了一致凸Banach空间中渐近拟非扩张型映象不动点具混合误差的迭代逼近问题,改进和推广了相关文献的结果。
4) asymptotically quasi-nonexpansive mapping
渐近拟非扩张映象
1.
New Ishikawa iteration approximation with errors for asymptotically quasi-nonexpansive mappings in convex metric space;
凸度量空间中渐近拟非扩张映象新的带误差的Ishikawa迭代逼近
5) asymptotically quasi-nonexpansive type mappings
渐近拟非扩张型映象
1.
This paper introduces N-step iterative sequence with mixed errors and gives a necessary and sufficient condition for the N-step iterative sequence with mixed errors to converges strongly to a common fixed point of a finite family of generalized asymptotically quasi-nonexpansive type mappings in a general Banach space.
引入具混合误差的N步迭代序列,并在一般的Banach空间上给出了具混合误差的N步迭代序列强收敛于有限个具有公共不动点的广义渐近拟非扩张型映象的一个公共不动点的充分必要条件。
6) K-asymptotically quasi-nonexpansive type mapping
K-渐近拟非扩张型映象
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条