1) quasi_nonexpasive condition
拟非扩张条件
2) quasi-nonexpansive operator
拟非扩张算子
1.
The construction and convergence of the Ishikawa iterative sequence for quasi-nonexpansive operator with boundary condition are studied in uniformly convex Banach spaces.
在一致凸Banach空间中,研究了带边界条件的拟非扩张算子的Ishkawa迭代序列的构造和收敛问题,推广和改进了已有的相应结果。
3) pseudo-nonexpansive operator
拟非扩张算子
1.
Hailin has been introduced the fixed point theorem for a class of pseudo-nonexpansive operators under certain conditions.
已有文献介绍了Banach空间中一类非线性拟非扩张算子的不动点存在定理,但未给出不动点的构造。
2.
This paper discusses the existence of the fixed points of a class of nonlinear pseudo-nonexpansive operators-M-pseudo-nonexpansive operators,then it asserts the fixed point theorem for this type of operator under certain conditions, which extends B.
讨论了一类非线性拟非扩张算子———M型拟非扩张算子的不动点的存在性,给出了这类算子在满足一定条件下的不动点定理,该定理推广了B。
4) quasi-nonexpansive mappings
拟非扩张映象
1.
In this paper, a new sufficient and necessary condition for Ishikawa iterative sequences with random error to converge to fixed points of asymptotically quasi-nonexpansive mappings is given.
给出了Banach空间中具随机误差Ishikawa迭代序列收敛于渐近拟非扩张映象的不动点的新的充分和必要条件。
5) closed and quasi-nonexpansive mapping
闭拟非扩张映像
6) non-conditional simulation
非条件模拟
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条