1) algebraic element
代数元
2) quaternion algebra
四元代数
1.
All the existing methods utilize quaternion algebra to iteratively compute M-sets’ boundaries.
用文中提出的体绘制算法绘制了三元数法和四元代数法所构造的三维M集 。
2.
In this paper, we firstly consider a quaternion algebra.
本文首先考察某个四元代数。
3) ternary algebra
三元代数
4) octionional algebra
八元数代数
5) quaternion algebra
四元数代数
1.
Defined the representing matrix of the generalized quaternion algebras over a field K, where K is a subfield of the complex number field C.
引入广义四元数代数的 K上表示矩阵的概念 ,探讨复线性表示与 K上表示矩阵的关系 。
2.
Using this result,we gave a nec-essary and sufficient condition about the problem of the isomorphism of two gener-alized quaternion algebras.
定义并完全决定了广义四元数代数的复线性表示。
3.
In this paper,we construct a new isomorphism relation between Zp[i,j,k]and M2(Zp),where Zp[i,j,k] is the quaternion algebra over Zp,and M2(Zp)is the 2×2 full matrix ring over Zp,while p is an odd prime.
给出模p(p为奇素数)剩余类环Zp上的四元数代数Zp[i,j,k]的一种新的矩阵表示。
6) algebraic quantity
代数元;代数量
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条