1) topology finite element
拓扑有限元
1.
This new method makes use of the special feature of topology finite element model and associates with fast Givens transformation.
基于文[1][2],本文给出了一种计算场问题的新算法——拓扑有限元Givens算法,该方法利用了拓扑有限元的特性及快速Givens变换。
2) FEA topology
有限元拓扑方法
4) finite topology
有限拓扑
5) finite topological type
有限拓扑型
1.
The result proves that with some Pinching conditions has finite topological type or even diffeomorphic to the Euclid Space.
应用比较几何的方法研究了完备非紧且具有特定曲率条件的黎曼流形,证明了在一定Pinching条件限制下,流形具有有限拓扑型或者微分同胚于Rn。
2.
In the paper, we prove that every complete open manifold with nonnegative curvature must be of finite topological type.
本文给出完备非紧具非负曲率的Riemann流形具有限拓扑型的一个简单证
6) finite product topology
有限积拓扑
1.
Product topology and box topology are two methods for introducing topologies in general Cartesian product,both of them are generalization of the concept of finite product topology.
积拓扑与箱拓扑是在拓扑空间族的笛卡儿积上引进的2种不同的拓扑,它们都是有限积拓扑的推广,对这2种拓扑作以比较是有益的。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条