1) Generalized differentiable exact penalty function
广义精确可微罚函数
2) nondifferentiable exact penalty functions
不可微精确罚函数
3) exact penalty function
精确罚函数
1.
Several Notes on the Exact Penalty Function Method for Nonlinear Programming;
非线性规划精确罚函数法的几点注释
2.
On minimizing problems subject to equality constraints,we give a new exact penalty function.
本文给出了一类等式约束优化的简单光滑精确罚函数,该精确罚函数有别于传统罚函数,它是光滑的和简单的,即在该精确罚函数表达式中,不含有目标函数的梯度。
3.
In this paper, we study the asymptotic behavior of methods based on a family of penalty functions that approximate asymptotically the usual exact penalty function for the differentiable nonlinear programming problem.
本文对可微非线性规划问题提出了一个渐近算法,它是基于一类逼近l1精确罚函数的罚函数而提出的,我们证明了算法所得的极小点列的聚点均为原问题的最优解,并在Mangasarian-Fromovitz约束条件下,证明了有限次迭代之后,所有迭代均为可行的,即迭代所得的极小点为可行点。
5) generalized quasi-differentiable functions
广义拟可微函数
1.
The theories of generalized quasi-differentiable functions (the extension of Farkas lemma) and the conclusions of semi-infinite programming are used to transform a class of two-level optimization programming to generalized quasi-differentiable optimization programming, and educe the KKT condition.
本文研究一类双层规划问题的KKT条件,利用广义拟可微函数的研究成果(广义Farkas引理)及关于一类半无限规划问题的研究将一类双层规划优化问题转化为广义拟可微问题来研究,并推导其问题的KKT条件及更一般形式的双层规划问题的KKT条件。
6) quasi-exactness penalization function
准精确惩罚函数
1.
The method of quasi-exactness penalization function is used to produce cost function.
介绍了一种运算放大器的电路级综合方法,该方法利用准精确惩罚函数法构造出待优化的价格函数,此外采用自适应遗传算法作为优化算法,即采用动态自适应技术来调整遗传算法中的交叉及变异概率以提高获得全局最优解的能力。
补充资料:广义殆周期函数
广义殆周期函数
generalized almost - periodic functions
广义殆周期函数「gen日,“别月aln扣成一碑该浦c五11州匆留;0606川e。。‘e no,,ne,IO皿”,eC蕊”e中yl压啊] 殆周期函数的各种推广所成的函数类.其中的每一类都推广了Bd叮殆周期函数(Bohra】n】ost一详石记沁几川c山ns)和压对四犷殆周期函数(E幻chnera】111斑t~p叮.iedic hlllctio留)的某些方面.下述数学概念(结构)出现在助hr与R刃加er殆周期性的定义中:l)定义在整个直线上的连续函数空间,可视为以 p伍g}一量缪}f(x)一g(x)l(*)为距离(曲臼叮ce)的度量空间;2)直线R,到复平面C,中的映射(函数);3)直线R,作为一个群;4)直线Rl作为一个拓扑空间. 殆周期函数的现有推广能依据这些结构方便地予以分类. l)如果代替连续性,要求函数f(x)(x 6RI)在每个有界区间上是p幂可积的可测函数,则如下三种表示式可取作距离: C代11阳oB距离( StePanov曲栩叮ce) 一伍。,一::时‘}f(x卜。(x)}咐’气 M阳贝距离(俄叨曲扭nce) ,附·{f,g}二,噢几。抓g}; 跳icovi匕h军亭(腼covitehdis~)、 Pa,抓。卜{、责I}f(x)与。尸dx}伙 相应于这些距离,可以有广义oen.毗.殆周期函数(StePanova】nl招t一讲垃劝记丘m ctio斑),广义W娜殆周期函数(W己yla」m璐t一详行浏c ftmctions)和广义肠翻政雨权为殆周期函数(B留ico访teh aln篮招t一详石阅记丘mc-tio璐). 2)假设直线R,不是映到c’,而是映到一个加现ch空间B.这样的映射称为抽象函数(咖。习以丘mctjon).假设抽象函数是连续的,并且它们之间的距离由式(,)定义,但其中的模用范数代替,则BOhr与且犯加℃r的定义可被推广并且导致所谓抽象殆周期函数(a忱你双t目n幻 st一沐次劝c ftm etio璐). 进一步的推广是以拓扑向量空间代替助朋ch空间获得的.在此情形下,对零元的每个邻域U,实数:=丁。称为f的U殆周期(U一习m璐t一详nod),如果对一切x任R,有f(x+:)一f(x)任U. 若用弱拓扑代替范数拓扑,则可得到所谓弱殆周期函数(城汕a】11】阴t一详对浏记丘mctions):函数f(x)(x‘R’,f任B)称为弱殆周期的,如果对任意泛函职任B’,函数毋仃(x))是数值殆周期函数. 3)假设用一个抽象群〔不必是拓扑群)G代替直线Rl,并考虑G到一拓扑向量空间(特别地,到C,)中的映射f(x),xeG.采用,又加盯的定义作为殆周期函数的定义是方便的:f称为群G上的殆周期函数(创的1万t一详滋汕cft川c加n on the 9.叩),如果函数族f。h)(h〔G)(或等价地,函数族f(hx))关于G上的一致收敛性是条件紧的(见群上的殆周期函数(a玩嗡t-详d记元几汉石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条