2) directional derivatives
方向导数
1.
A set of first-order necessary optimality conditions based on the the upper and lower bounds of directional derivatives of the optimal value function of lower problem are proposed.
首先,利用下层问题最优值函数的方向导数的上下界的性质给出一阶最优性条件。
2.
The directional derivatives of the multiple eigenvalues are obtained.
本文研究解析依赖于多参数的二次特征值问题重特征值的灵敏度分析,得到了重特征值的方向导数,证明了相应的特征向量矩阵和特征值平均值的解析性,给出了其一阶偏导数的表达式。
3) direction derivative
方向导数
1.
The extreme value of binary function at f_(xx)f_(yy)-f~2_(xy)=0 is judged by its direction derivative which follows ray starting from stable point and passing point P at every point P in noncentral neighborhood of stable point.
用驻点的去心邻域内各点P处函数沿以驻点为端点的过点P的射线方向的方向导数是否同号,来判定二元函数f(x,y)在fxxfyy-f2xy=0时的极限。
2.
This paper introduces the use of lagrange multiplier method and direction derivative method to solve the conditional extreme problem,and makes a comparison between these two methods.
通常我们在求函数条件极值问题时,原则上将条件极值问题转化成无条件极值问题来进行求解,本文介绍了利用拉格朗日乘数法和方向导数法来解决条件极值问题,并将这两种方法进行了比较。
3.
Using definition of Direction derivative of E-convex functions,it is obtained that characteristic theorem of Direction derivative of E-convex functions and applying this theorem it is obtained that some properties of Direction derivative of E-convex functions which are verified.
在E凸集上,引进E凸函数,定义了广义实值函数的方向导数即沿给定方向的变化率。
4) directional derivative
方向导数
1.
The directional derivatives of a map in a Banach algebra;
Banach代数上映射的方向导数
2.
Image edge detection based on directional derivative and cubic B-spline wavelet
基于方向导数和B样条小波的图像边缘检测
3.
Partition of solutions and directional derivatives for linear programming problem with higher-dimensional parameters
多维参数线性规划的解分割和方向导数
5) normal derivative
法向导数
6) Clarke directional derivative
Clarke方向导数
1.
Then we considered the relation between(h,φ)-generalized directional derivative and Clarke directional derivative, and discussed the relations of these convexity and monotone.
本文定义了几种(h,φ)-广义凸性及(h,φ)-广义单调性,讨论了广义(h,φ)-方向导数与Clarke方向导数,广义(h,φ)-梯度集与Clarke梯度集等的相关关系。
补充资料:方向导数
一个多元函数在一点处某个射线方向上变化时对于距离的变化率。例如三元函数u=??(x,y,z)在一点(x,y,z)处,在给定方向角(α,β,γ)的方向n上的方向导数是
如果在这变化率中同时考虑到指向恰好相反的那条射线,并令其中的距离带上负号,那就得到对称的方向导数。这样对称化了的方向导数在各个坐标轴方向上便与一般的偏导数一致。而且,在后者都连续的前提下,可以通过后者来表示;如在上例中便有
。
如果在这变化率中同时考虑到指向恰好相反的那条射线,并令其中的距离带上负号,那就得到对称的方向导数。这样对称化了的方向导数在各个坐标轴方向上便与一般的偏导数一致。而且,在后者都连续的前提下,可以通过后者来表示;如在上例中便有
。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条