1) generalized Noether's identities
广义Noether恒等式
2) generalized Noether identity
广义Noether等式
1.
The varied form under the infinitesimal transformations is given and the generalized Noether identity and the form of conserved quantity are obtained .
建立d’Alembert Lagrange原理的Poincar Chetaev形式 ,给出原理在无限小变换下的变形形式 ,由此得到广义Noether等式以及守恒量的形式 。
3) Noether identities
Noether恒等式
1.
Then it is supposed that the constraint multipliers are the functions of time and canonical variables, and combination coefficients in the gauge generator are the functions of time, canonical variables and constraint multipliers, the extended canonical Noether identities (ECNI) are deduced.
在约束乘子是 时间和正则变量的函数,以及规范生成元的组合系数为时间、正则变量和约束乘子的函数一般情况下,建立了扩 展正则Noether恒等式(ECNI)。
2.
Based on the phase-space generating functional for a system with a singular higher-order Lagrangian,the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived.
基于高阶微商奇异拉氏量系统的相空间生成泛函 ,导出了定域和非定域变换下的量子正则Noether恒等式 ;对高阶微商规范不变系统 ,导出了位形空间中定域和非定域变换下的量子Noether恒等式 。
4) general identity
广义恒等式
5) Generalized Picone-type identity
广义Picone型恒等式
6) Generalized MacWi lliams identities
广义MacWilliams恒等式
补充资料:储蓄-投资恒等式
储蓄-投资恒等式:基于国民收入会计角度反映经济活动事后的储蓄与投资恒等关系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条