1) Lipschitz operators
Lipschitz连续算子
2) Lipschitz continuity
Lipschitz连续性
1.
Finally,the Lipschitz continuity for this class of parametric variational inclusions was also analyzed.
利用H-单调算子的预解算子技巧,在Hilbert空间中,研究一类新的含H-单调算子的含参分包含问题,证明了这类含参变分包含解的存在唯一性,又进一步分析了这类含参变分包含解的Lipschitz连续性问题。
4) Lipschitz continuous
Lipschitz连续
1.
This paper mainly focuses on the study of the uniform exponential stability for a class of non-smooth slowly varying unstable linear systems which A(t) is supposed to be Lipschitz continuous in the systems.
主要研究一类非光滑慢变不确定线性系统的一致指数稳定性,只假定系统中A(t)是Lipschitz连续的。
5) ζ-Lipschitz continuity
ζ-Lipschitz连续
6) L-Lipschitz continuous
L-Lipschitz连续
补充资料:连续算子
连续算子
continuous operator
【补注】在西方文献中,倾向于把术语“算子”保留为向量空间之间的一个映射.见【AI],「A2].连续算子【阴柱nu皿s叹娜比.加r;搜网阵声』.‘盛“叫四Tol)] 一个拓扑空间X(一般说来它也是向量空间)的子集M到一个同样类型的空间y中的连续映射A,明确地说,一个映射A:M一y(McX),在点、。任M处是i奎续的,指对于点Ax。的任何邻域F〔Y,有凡,的邻域u二x,使得A(M自u)二r;一个映射A:M一Y在集合M上是连续的指它在M的每个点处是连续的. 为了一个算子4:M~Y在ML是连续的,必须且只须,对一于每个开(闭)集HCy,完全逆象A’(H)是合x中一个开(闭)集在ML的迹,即A’(H)=M自“,这里G是X中的开(闭)集.对于连续算子,链法则成立:设A;M一Y(M仁X)在M一上(或在戈。任M处)是连续的,又设B:N~Z(Ncy)在NI二(或在夕。任N处)是连续的.如果Q=M自A一‘(N)是非空的(或y。二A、,))、邵么BA在Q土一(或在x。处)是连续的. 当X与Y是拓扑向量空间,A是一个定义于线性子空间L CX上且取值干y中的线性连续算不时,那么A在L的某个汽(例如原点)的连续性蕴涵A在整个L上的连续性.在拓扑向量空间X的一个一子流形L上的连续算子在LL是有界的,即任何有界集N CL的象在Y中是有界的.如果X与y是可分的,那么N的紧性蕴涵A(叼的紧性.一个算子A在M上是一致连续的(uniformlycon-tinuous),指对于原点的任何邻域VCY,存在原点的一个邻域UCX,使得x一y‘U蕴涵Ax一Ay任V.在拓扑向量空间的一个线性子流形上的线性连续算子必在这个子流形上是一致连续的. 除了连续性之外,还引人一个算子的可数连续性的概念一个算子A:M~Y在x。任M处是可数连续的(countably continuous),指对于任何序列x,~x。,{x。}C=M,有 Ax,~众。.对于可度量化的空间,连续性与可数连续性一致.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条