说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不分明化拓扑群
1)  fuzzifying topological groups
不分明化拓扑群
1.
: Is this paper,we introduce the concepts of compactness in fuzzifying topological groups,anddiscuss some properties of the notion.
该文讨论了不分明化拓扑群的紧性,给出了不分明化拓扑群的紧性与其子群及商群的紧性之间的若干关系。
2)  fuzzifying topology
不分明化拓扑
1.
Nearly Compactness and Almost Compactness in Fuzzifying Topology;
不分明化拓扑中近似紧性和几乎紧性
2.
SCompactness in fuzzifying topology;
不分明化拓扑中的S-紧性
3.
Based on the concept of pre-open set,the concept of strong compactness is introduced in fuzzifying topology and some properties are obtained.
在不分明化拓扑空间中,从pre-开集出发引入了强紧性的概念,并且给出了它的一些性质。
3)  crisp topological groups
分明拓扑群
1.
The stratiform structure for the product is studied,and the relation is given between the product and direct product of crisp topological groups.
研究了L-Fuzzy拓扑群的直积的层次结构,揭示了它与分明拓扑群的直积之间的联
4)  fuzzy topology
不分明拓扑
1.
With the results obtained in recent researches in fuzzy topology,this paper presents a new definition of local N compact By the new definition of local N compact those important results or propositions in general topology can be extended to fuzzy topology Theorems 4、8、11、16 display the reasonableness and originality of the new definition of N compact distinctl
本文利用不分明拓扑学最近研究结果 ,重新给出了不分明拓扑空间的局部良紧定义 ,该定义能将一般拓扑学中有关局部紧的重要定理或命题 ,在加一些适当的条件或不加条件推广至不分明拓扑学中 ,特别是本文定理 4、8、11、16等突出地显示了本文定义的合理性以及独特
2.
Properties of compactness of cover style in fuzzy topology and relations with other kinds of fuzzy compactness are established.
给出了不分明拓扑(fts)中覆盖式紧性的主要性质,讨论了其与若干模糊紧性等价刻
5)  fuzzifying linear topology
不分明化线性拓扑
6)  fuzzifying topological linear spaces
不分明化拓扑线性空间
补充资料:Galois拓扑群


Galois拓扑群
Galois topotogkal group

【补注】G(L/K)的开子群对应L中在K上次数有限的子域.若H是G(LZ幻的任一子群,则L/尸是G曲血扩张(C司015 extel拐沁n),且G(L/尸)是H的闭包. 裴定一译赵春来校Cal碗拓扑群[G刊如七加州馆吻.争仪甲;ra月ya T000加,r“,eeRaa rpynn.1 赋予K且111拓扑(E汪团topology)的Ga】015群.这个拓扑的滤子基(即单位元的开邻域的基)由指数有限的正规子群构成.设L厂K是有限G司。is扩张,它的G刊[ois群G(L/幻的拓扑是离散的.若域L是K的有限扩张找的并,则(拓扑)〔冶如is群G(L/K)是有限群G(长/幻的投射极限,每个G(凡/幻有离散拓扑,G(L/均是投射有限群(profinitegro叩),是一个全不连通的紧拓扑群.若K‘是‘(L/幻的不变域,则子群G(L/K’)在G(L/K)中处处稠密.有限Galois扩张的基本定理可以推广到无限扩张:C司。is扩张L/K的拓扑G创[ois群的闭子群与L中包含K的子域一一对应. H .B,八。月几川eB撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条